九年級數(shù)學《1.6三角形中位線》學案(2) 人教新標版型新授授時間執(zhí)筆人審稿人總第 14 時學 習 內 容學習隨記教學目標:1.掌握梯形中位線的概念和梯形中位線定理2.能夠應用梯形中位線概念及定理進行有關的論證和計算,進一步提高學生的計算能力和分析能力3.通過定理證明及一題多解,逐步培養(yǎng)學生的分析問題和解決問題的能力一、情景創(chuàng)設怎樣將一張?zhí)菪斡布埰舫蓛刹糠,使分成的兩部分能拼成一個三角形?操作:(1)剪一個梯形,記為梯形ABCD;(2)分別取AB、CD的中點、N,連接N;(3)沿AN將梯形剪成兩部分,并將△ADN繞點N按順時針方向旋轉180°到△ECN的位置,得△ABE,如右圖。討論:在上圖中,N與BE有怎樣的位置關系和數(shù)量關系?為什么?二、合作交流1.梯形中位線定義: 2.現(xiàn)在我們研究梯形中位線有什么性質.如右圖所示:N是梯形 ABCD的中位線,引導學生回答下列問題:N與梯形的兩底邊AD、BC有怎樣的位置關系和數(shù)量關系?為什么? 梯形中位線定理:
定理符號語言表達:∵
3.歸納總結出梯形的又一個面積公式:S 梯= (a+b)h 設中位線長為l ,則l = (a+b), S=l*h三、例題解析例1.如圖,梯子各橫木條互相平行,且A1A2=A2A3=A3A4=A4A5,B1B2=B2B3=B3B4=B4B5。已知橫木條A1B1=48cm,A2B2=44cm,求橫木條A3B3、A4B4、A5B5的長
練習:①一個梯形的上底長4 cm,下底長6 cm,則其中位線長為 ;②一個梯形的上底長10 cm,中位線長16 cm,則其下底長為 ;③已知梯形的中位線長為6 cm,高為8 cm,則該梯形的面積為________ ;④已知等腰梯形的周長為80 cm,中位線與腰長相等,則它的中位線長 .
例2:已知:如圖在梯形ABCD中,AD∥BC,AB=AD+BC,P為CD的中點,求證:AP⊥:
已知橫木條A1B1=48cm,A2B2=44cm,求橫木條A3B3、A4B4、A5B5的長
例2:已知:如圖在梯形ABCD中,AD∥BC,AB=AD+BC,P為CD的中點,求證:AP⊥BP
四、拓展練習 1.已知,在梯形ABCD中,AD∥BC,對角線AC⊥BD,且AC =12,BD=9,則此梯形的中位線長是 …( )A.10 B. C. D.12 2.已知,等腰梯形ABCD中,兩條對角線AC、BD互相垂直,中位線EF長為8cm,求它的高CH.
右腦記憶論壇 | 快速記憶法 | 記憶力培訓 | 速讀培訓 | 速讀軟件 |
Copyright(C) 2006-2014 逍遙右腦 All Rights Reserved