逍遙右腦記憶網(wǎng)-免費(fèi)提供各種記憶力訓(xùn)練學(xué)習(xí)方法!
超右腦
|
催眠術(shù)
|
潛能開發(fā)
|
影像閱讀
|
右腦開發(fā)訓(xùn)練
|
網(wǎng)站地圖
記憶方法
右腦開發(fā)
快速閱讀
思維導(dǎo)圖
學(xué)習(xí)方法
學(xué)習(xí)計(jì)劃
作文大全
早期教育
勵(lì)志名言
右腦記憶
記憶法
|
記憶宮殿
|
記憶力訓(xùn)練
記憶術(shù)
|
最強(qiáng)大腦
|
右腦記憶法
學(xué)習(xí)方法
高中學(xué)習(xí)方法
|
高考
|
小學(xué)資源
|
單詞記憶
初中學(xué)習(xí)方法
|
中考
|
教案設(shè)計(jì)
|
試題中心
潛能成功
吸引力法則
|
成功學(xué)
|
九型人格
注意力訓(xùn)練
|
潛意識(shí)
|
思維模式
初中學(xué)習(xí)方法
初中語(yǔ)文
初中英語(yǔ)
初中數(shù)學(xué)
初中物理
初中化學(xué)
初中生物
初中政治
初中歷史
初中地理
中考學(xué)習(xí)網(wǎng)
初一學(xué)習(xí)方法
初一語(yǔ)文
初一數(shù)學(xué)
初一英語(yǔ)
初一生物
初一政治
初一歷史
初一地理
初二物理
初一學(xué)習(xí)
初中教案
初二學(xué)習(xí)方法
初二語(yǔ)文
初二數(shù)學(xué)
初二英語(yǔ)
初二生物
初二政治
初二歷史
初二地理
初三物理
初二學(xué)習(xí)
初中試題
初三學(xué)習(xí)方法
初三語(yǔ)文
初三數(shù)學(xué)
初三英語(yǔ)
初三生物
初三政治
初三歷史
初三地理
初三化學(xué)
初三學(xué)習(xí)
初中作文
逍遙右腦記憶
>
教案設(shè)計(jì)
>
數(shù)學(xué)
>
九年級(jí)
>
九年級(jí)數(shù)學(xué)競(jìng)賽動(dòng)態(tài)幾何問(wèn)題透視輔導(dǎo)教案
編輯:
逍遙路
關(guān)鍵詞:
九年級(jí)
來(lái)源:
高中學(xué)習(xí)網(wǎng)
【例題求解】
【 例1】 如圖,把直角三角形ABC的斜邊AB放在定直線上,按順時(shí)針?lè)较蛟?上轉(zhuǎn)動(dòng)兩次,使它轉(zhuǎn)到A″B″C″的位置,設(shè)BC=1,AC= ,則頂點(diǎn)A運(yùn)動(dòng)到點(diǎn)A″的位置時(shí),點(diǎn)A經(jīng)過(guò)的路線與直線 所圍成的面積是 .
(黃岡市中考題)
思路點(diǎn)撥 解題的關(guān)鍵是將轉(zhuǎn)動(dòng)的圖形準(zhǔn)確分割.RtΔABC的兩次轉(zhuǎn)動(dòng),頂點(diǎn)A所經(jīng)過(guò) 的路線是兩段圓弧,其中圓心角分別為120°和90°,半徑分別為2和 ,但該路線與直線 所圍成的面積不只是兩個(gè)扇形面積之和.
【例2】如圖,在⊙O中,P是直徑AB上一動(dòng)點(diǎn),在AB同側(cè)作AA′⊥AB,BB′⊥AB,且AA′=AP,BB′=BP,連結(jié)A′B′,當(dāng)點(diǎn)P從點(diǎn)A移到點(diǎn)B時(shí),A′B′的中點(diǎn)的位置( )
A.在平分AB的某直線上移動(dòng) B.在垂直AB的某直線上移動(dòng)
C.在AmB上移動(dòng) D.保持固定不移動(dòng)
(荊州市中考題)
思路點(diǎn)撥 畫 圖、操作、實(shí)驗(yàn),從中發(fā)現(xiàn)規(guī)律.
【例3】 如圖,菱形OABC的長(zhǎng)為4厘米,∠AOC=60°,動(dòng)點(diǎn)P從O出發(fā),以每秒1厘米的速度沿O→A→B路線運(yùn)動(dòng),點(diǎn)P出發(fā)2秒后,動(dòng)點(diǎn)Q從O出發(fā),在OA上以每秒1厘米的速度,在AB上以每秒2厘米的速度沿O→A→B路線運(yùn)動(dòng),過(guò)P、Q兩點(diǎn)分別作對(duì)角線AC的平行線.設(shè)P點(diǎn)運(yùn)動(dòng)的時(shí)間為 秒,這兩條平行線在菱形上截出的圖形(圖中的陰影部分)的周長(zhǎng)為 厘米,請(qǐng)你回答下列問(wèn)題:
(1)當(dāng) =3時(shí), 的值是多少?
(2)就下列各種情形:
①0≤ ≤2;②2≤ ≤4;③4≤ ≤6;④6≤ ≤8.求 與 之間的函數(shù)關(guān)系式.
(3)在給出的直角坐標(biāo)系中,用圖象表示(2)中的各種情形下 與 的關(guān)系.
(吉林省中考題)
思路點(diǎn)撥 本例是一個(gè)動(dòng)態(tài)幾何問(wèn)題,又是一個(gè)“分段函數(shù)”問(wèn)題,需運(yùn)用動(dòng)態(tài)的觀點(diǎn),將各段分別討論、畫圖、計(jì)算.
注:動(dòng)與靜是對(duì)立的,又是統(tǒng):一的,無(wú)論圖形運(yùn)動(dòng)變化的哪一類問(wèn)題,都真實(shí)地反映了現(xiàn)實(shí)世界中數(shù)與形的變與不變兩個(gè)方面,從辯證的角度去觀察、探索、研究此類問(wèn)題,是一種重要的解題策略.
建立運(yùn)動(dòng)函數(shù)關(guān)系就更一般地、整體-地把握了問(wèn)題,許多相關(guān)問(wèn)題就轉(zhuǎn)化為求函數(shù)值或自變量的值.
【例4】 如圖,正方形ABCD中,有一直徑為BC的半圓,BC=2cm,現(xiàn)有兩點(diǎn)E、F,分別從點(diǎn)B、點(diǎn)A同時(shí)出發(fā),點(diǎn)E沿線段BA以1m/秒的速度向點(diǎn)A運(yùn)動(dòng),點(diǎn)F沿折線A—D—C以2cm/秒的速度向點(diǎn)C運(yùn)動(dòng),設(shè)點(diǎn)E離開點(diǎn)B的時(shí)間為2 (秒).
(1)當(dāng) 為何值時(shí),線段EF與BC平行?
(2)設(shè)1< <2,當(dāng) 為何值時(shí),EF與半圓相切?
(3)當(dāng)1≤ <2時(shí),設(shè)EF與AC相交于點(diǎn)P,問(wèn)點(diǎn)E、F運(yùn)動(dòng)時(shí),點(diǎn)P的位置是否發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明理由;若不發(fā)生變化,請(qǐng)給予證明,并求AP:PC的值.
(江西省中考題)
思路點(diǎn)撥 動(dòng)中取靜,根據(jù)題意畫出不同位置的圖形,然后分別求解,這是解本例的基本策略,對(duì)于(1)、(2),運(yùn)用相關(guān)幾何性質(zhì)建立關(guān)于 的方程;對(duì)于(3),點(diǎn)P的位置是否發(fā)生變化,只需看 是否為一定值.
注:動(dòng)態(tài)幾何問(wèn)題常通過(guò)觀察、比較、分析、歸納等方法尋求圖形中某些結(jié)論不變或變化規(guī)律,而 把特定的運(yùn)動(dòng)狀態(tài),通過(guò)代數(shù)化來(lái)定量刻畫描述也是解這類問(wèn)題的重要思想.
【例5】 ⊙O1與⊙O2相交于A、B兩點(diǎn);如圖(1),連結(jié)O2 O1并延長(zhǎng)交⊙O1于P點(diǎn),連結(jié)PA、PB并分別延長(zhǎng)交⊙O2于C、D兩點(diǎn),連結(jié)C O2并延長(zhǎng)交⊙O2于E點(diǎn).已知⊙O2的半徑為R,設(shè)∠CAD= .
(1)求:CD的長(zhǎng)(用含R、 的式子表示);
(2)試判斷CD與PO1的位置關(guān)系,并說(shuō)明理由;
(3)設(shè)點(diǎn)P′為⊙O1上(⊙O2外)的動(dòng)點(diǎn),連結(jié)P′A、P′ B并分別延長(zhǎng)交⊙O2于C′、D′,請(qǐng)你探究∠C′AD′是否等于 ? C′D′與P′Ol的位置關(guān)系如何?并說(shuō)明理由.
(濟(jì)南市中考題)
思路點(diǎn)撥 對(duì)于(1)、(2),作出圓中常見(jiàn)輔助線;對(duì)于(3),P點(diǎn)雖為OOl上的一個(gè)動(dòng)點(diǎn),但⊙O1、⊙O2一些量(如半徑、AB)都是定值或定弧,運(yùn)用圓的性質(zhì),把角與孤聯(lián)系起來(lái).
學(xué)力訓(xùn)練
1.如圖, ΔABC中,∠C=90°,AB=12cm,∠ABC=60°,將ΔABC以點(diǎn)B為中心順時(shí)針旋轉(zhuǎn),使點(diǎn)C旋轉(zhuǎn)到AB延長(zhǎng)線上的D處,則AC邊掃過(guò)的圖形的面積是 cm (π=3.14159…,最后結(jié)果保留三個(gè)有效數(shù)字). (濟(jì)南市中考題)
2.如圖,在RtΔ ABC中,∠C=90°,∠A=60°,AC= cm,將ΔABC繞點(diǎn)B旋轉(zhuǎn)至ΔA'BC'的位置,且使A、B、C'三點(diǎn)在同一條直線上,則點(diǎn)A經(jīng)過(guò)的最短路線的長(zhǎng)度是 cm.
(黃岡市中考題)
3.一塊等邊三角形的木板,邊長(zhǎng)為l,現(xiàn)將木板沿水平線翻滾,那么B點(diǎn)從開始至結(jié)束走過(guò)的路徑長(zhǎng)度為( )
A. B. C.4 D.
(煙臺(tái)市中考題)
4.把ΔABC沿AB邊平移到ΔA'B'C'的位置,它們的重疊部分的面積是ΔABC的面積的一半,若AB= ,則此三角形移動(dòng)的距離AA'是( )
A. B. C.1 D.
(荊門市中考題)
5.如圖,正三角形ABC的邊長(zhǎng)為6 厘米,⊙O的半徑為r厘米,當(dāng)圓心O從點(diǎn)A出發(fā),沿著線路AB—BC—CA運(yùn)動(dòng),回到點(diǎn)A時(shí),⊙O隨著點(diǎn)O的運(yùn)動(dòng)而移動(dòng).
(1)若r= 厘米,求⊙O首次與BC邊相切時(shí)AO的長(zhǎng);
(2)在O移動(dòng)過(guò)程中,從切點(diǎn)的個(gè)數(shù)來(lái)考慮,相切有幾種不同的情況?寫出不同的情況下,r的取值范圍及相應(yīng)的切點(diǎn)個(gè)數(shù);
(3)設(shè)O在整個(gè)移動(dòng)過(guò)程中,在ΔABC內(nèi)部,⊙O未經(jīng)過(guò)的部分的面積為S,在S>0時(shí),求關(guān)于r的函數(shù)解析式,并寫出自變量r的取值范圍.
(江西省中考題)
6.已知:如圖,⊙O韻直徑為10,弦AC=8,點(diǎn)B在圓周上運(yùn)動(dòng)(與A、C兩點(diǎn)不 重合),連結(jié)BC、BA,過(guò)點(diǎn)C作CD⊥AB于D.設(shè)CB的長(zhǎng)為 ,CD的長(zhǎng)為 .
(1)求 關(guān)于 的函數(shù)關(guān)系式;當(dāng)以BC為直徑的圓與AC相切時(shí),求 的值;
(2)在點(diǎn)B運(yùn)動(dòng)的過(guò)程中,以CD為直徑的圓與⊙O有幾種位置關(guān)系,并求出不同位置時(shí) 的取值范圍;
(3)在點(diǎn)B運(yùn)動(dòng)的過(guò)程中,如果過(guò)B作BE⊥AC于E,那么以BE為直徑的圓與⊙O能內(nèi)切嗎?若不能,說(shuō)明理由;若能,求出 BE的長(zhǎng).
(太原市中考題)
7.如圖,已知A為∠POQ的邊OQ上一點(diǎn),以A為頂點(diǎn)的∠MAN的兩邊分別交射線OP于M、N兩點(diǎn),且∠MAN=∠POQ= ( 為銳角).當(dāng)∠MAN以點(diǎn)A為旋轉(zhuǎn)中心,AM邊從與AO重合的位置開始,按逆時(shí)針?lè)较蛐D(zhuǎn)(∠MAN保持不變)時(shí),M、N兩點(diǎn)在射線OP上同時(shí)以不同的速度向右平移移動(dòng).設(shè)OM= ,ON= ( > ≥0),ΔAOM的面積為S,若cos 、OA是方程 的兩個(gè)根.
(1)當(dāng)∠MAN旋轉(zhuǎn)30°(即∠OAM=30°)時(shí),求點(diǎn)N移動(dòng)的距離;
(2)求證:AN2=ON?MN;
(3)求 與 之間的函數(shù)關(guān)系式及自變量 的取值范圍;
(4)試寫出S隨 變化的函數(shù)關(guān)系式,并確定S的取值范圍.
(河北省中考題)
8.已知:如圖,梯形ABCD中,AD∥BC,AB=CD=3cm, ∠C=60°,BD⊥CD.
(1)求BC、AD的長(zhǎng)度;
(2)若點(diǎn)P從點(diǎn)B開始沿BC邊向點(diǎn)C以2cm/s的速度運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C開始沿CD邊向點(diǎn)D以1cm/s的速度運(yùn)動(dòng),當(dāng)P、Q分別從B、C同時(shí)出發(fā)時(shí),寫出五邊形ABPQD的面積S與運(yùn)動(dòng)時(shí)間 之間的函數(shù)關(guān)系式,并寫出自變量 的取值范圍(不包含點(diǎn)P在B、C兩點(diǎn)的情況);
(3)在(2)的前提下,是否存在某一時(shí)刻 ,使線段PQ把梯形ABCD分成兩部分的面積比為1:5?若存在,求出 的值;若不存在,請(qǐng)說(shuō)明理由.
(青島市中考)
9.已知:如圖①,E、F、G、 H按照AE=CG,BF=DH,BF=nAE(n是正整數(shù))的關(guān)系,分別在兩鄰邊長(zhǎng) 、 的矩形ABCD各邊上運(yùn)動(dòng).
設(shè)AE= ,四邊形EFGH的面積為S.
(1)當(dāng)n=l、2時(shí),如圖②、③,觀察運(yùn)動(dòng)情況,寫出四邊形EFGH各頂點(diǎn)運(yùn)動(dòng)到何位置,使?
(2)當(dāng)n=3時(shí),如圖④,求S與 之間的函數(shù)關(guān)系式(寫出自變量 的取值范圍),探索S隨 增大而變化的規(guī)律;猜想四邊形EFGH各頂點(diǎn)運(yùn)動(dòng)到何位置,使 ;
(3)當(dāng)n=k (k≥1)時(shí),你所得到的規(guī)律和猜想是否成立?請(qǐng)說(shuō)明理由.
(福建省三明市中考題)
10.如圖1,在直角坐標(biāo)系中,點(diǎn)E從O點(diǎn)出發(fā),以1個(gè)單位/秒的速度沿 軸正方向運(yùn)動(dòng),點(diǎn)F從O點(diǎn)出發(fā),以2個(gè)單位/秒的速度沿 軸正方向運(yùn)動(dòng),B(4,2),以BE為直徑作⊙O1.
(1)若點(diǎn)E、F同時(shí)出發(fā),設(shè)線段EF與線段OB交于點(diǎn)G,試判斷點(diǎn)G與⊙O1的位置關(guān)系,并證明你的結(jié)論;
(2)在(1)的條件下,連結(jié)FB,幾秒時(shí)FB與⊙O1相切?
(3)如圖2,若E點(diǎn)提前2秒出發(fā),點(diǎn)F再出發(fā),當(dāng)點(diǎn)F出發(fā)后,E點(diǎn)在A點(diǎn)左側(cè)時(shí),設(shè)BA⊥ 軸于A點(diǎn),連結(jié)AF交⊙O1于點(diǎn)P,試問(wèn)PA?FA的值是否會(huì)發(fā)生變化?若不變,請(qǐng)說(shuō)明理由,并求其值;若變化,請(qǐng)求其值的變化范圍.
(武漢市中考題)
本文來(lái)自:逍遙右腦記憶 http://www.portlandfoamroofing.com/chusan/64822.html
相關(guān)閱讀:
九年級(jí)數(shù)學(xué)競(jìng)賽圓與圓輔導(dǎo)教案
上一篇:
九年級(jí)數(shù)學(xué)競(jìng)賽開放性問(wèn)題評(píng)說(shuō)輔導(dǎo)教案
下一篇:
銳角三角函數(shù)的應(yīng)用
相關(guān)主題
九年級(jí)數(shù)學(xué)競(jìng)賽圓與圓輔導(dǎo)教案
九年級(jí)數(shù)學(xué)競(jìng)賽避免漏解的奧秘輔導(dǎo)教案
九年級(jí)數(shù)學(xué)上冊(cè)第22章一元二次方程教學(xué)案(五份)
中考數(shù)學(xué)整體思想與特殊值復(fù)習(xí)教案
初三數(shù)學(xué)第24章圓導(dǎo)學(xué)案
中考數(shù)學(xué)圖表信息題復(fù)習(xí)教案
九年級(jí)數(shù)學(xué)競(jìng)賽幾何的定值與最值輔導(dǎo)教案
九年級(jí)數(shù)學(xué)競(jìng)賽解直角三角形教案
2012年中考數(shù)學(xué)一輪復(fù)習(xí)精品講義(第5章相交線與平行線)
中考數(shù)學(xué)閱讀理解題復(fù)習(xí)教案
相關(guān)推薦
推薦閱讀
平移變換
數(shù)學(xué):25.1《平移變換》教案(北京課改版九年級(jí)下) 目標(biāo): 知識(shí)與技能目 標(biāo): 1.通過(guò)具體……
證明2導(dǎo)學(xué)案
善國(guó)中學(xué)九年級(jí)數(shù)學(xué)導(dǎo)學(xué)案 題§1.2.2直角三角形型新授時(shí)5教師 目標(biāo)進(jìn)一步掌握推理證明的方……
九年級(jí)數(shù)學(xué)競(jìng)賽開放性問(wèn)題評(píng)說(shuō)輔導(dǎo)教案
【例題求解】 【例1】 如圖,⊙O與⊙O1外切于點(diǎn)T,PT為其內(nèi)公切線,AB為其外公切線,且A、B……
中考數(shù)學(xué)平面直角坐標(biāo)系與函數(shù)的概念復(fù)習(xí)
節(jié)第三題 型復(fù)習(xí)教法講練結(jié)合 教學(xué)目標(biāo)(知識(shí)、能力、教育)1.認(rèn)識(shí)并能畫出平面直角坐標(biāo)系……
弧長(zhǎng)及扇形的面積
M 27.4弧長(zhǎng)及扇形的面積 教學(xué)目標(biāo) (一)教學(xué)知識(shí)點(diǎn) 1.經(jīng)歷探索弧長(zhǎng)計(jì)算公式及扇形面積計(jì)算……
相關(guān)閱讀
九年級(jí)數(shù)學(xué)競(jìng)賽避免漏解的奧秘輔導(dǎo)教案
初三上冊(cè)數(shù)學(xué)第一章圖形與證明(二)復(fù)習(xí)教
相似三角形的判定2
九年級(jí)數(shù)學(xué)競(jìng)賽怎樣求最值專題輔導(dǎo)教案
概率導(dǎo)學(xué)稿
2012年中考數(shù)學(xué)社會(huì)熱點(diǎn)專項(xiàng)復(fù)習(xí):宏觀調(diào)
銳角三角函數(shù)值的求法
一元二次方程
一元二次方程復(fù)習(xí)教案
九年級(jí)數(shù)學(xué)競(jìng)賽動(dòng)態(tài)幾何問(wèn)題透視輔導(dǎo)教案
右腦記憶論壇
|
快速記憶法
|
記憶力培訓(xùn)
|
速讀培訓(xùn)
|
速讀軟件
|
Copyright(C) 2006-2014
逍遙右腦
All Rights Reserved