逍遙右腦記憶網(wǎng)-免費提供各種記憶力訓(xùn)練學(xué)習(xí)方法!
超右腦
|
催眠術(shù)
|
潛能開發(fā)
|
影像閱讀
|
右腦開發(fā)訓(xùn)練
|
網(wǎng)站地圖
記憶方法
右腦開發(fā)
快速閱讀
思維導(dǎo)圖
學(xué)習(xí)方法
學(xué)習(xí)計劃
作文大全
早期教育
勵志名言
右腦記憶
記憶法
|
記憶宮殿
|
記憶力訓(xùn)練
記憶術(shù)
|
最強(qiáng)大腦
|
右腦記憶法
學(xué)習(xí)方法
高中學(xué)習(xí)方法
|
高考
|
小學(xué)資源
|
單詞記憶
初中學(xué)習(xí)方法
|
中考
|
教案設(shè)計
|
試題中心
潛能成功
吸引力法則
|
成功學(xué)
|
九型人格
注意力訓(xùn)練
|
潛意識
|
思維模式
初中學(xué)習(xí)方法
初中語文
初中英語
初中數(shù)學(xué)
初中物理
初中化學(xué)
初中生物
初中政治
初中歷史
初中地理
中考學(xué)習(xí)網(wǎng)
初一學(xué)習(xí)方法
初一語文
初一數(shù)學(xué)
初一英語
初一生物
初一政治
初一歷史
初一地理
初二物理
初一學(xué)習(xí)
初中教案
初二學(xué)習(xí)方法
初二語文
初二數(shù)學(xué)
初二英語
初二生物
初二政治
初二歷史
初二地理
初三物理
初二學(xué)習(xí)
初中試題
初三學(xué)習(xí)方法
初三語文
初三數(shù)學(xué)
初三英語
初三生物
初三政治
初三歷史
初三地理
初三化學(xué)
初三學(xué)習(xí)
初中作文
逍遙右腦記憶
>
教案設(shè)計
>
數(shù)學(xué)
>
九年級
>
弧弦和圓心角
編輯:
逍遙路
關(guān)鍵詞:
九年級
來源:
高中學(xué)習(xí)網(wǎng)
作課類別課題24.1.3弧、弦、圓心角課型新授
媒體多媒體
教
學(xué)
目
標(biāo)知識
技能1.通過觀察實驗,使學(xué)生了解圓心角的概念.
2.掌握在同圓或等圓中,兩個圓心角、兩條弧、兩條弦中有一組量相等,就可以推出它們所對應(yīng)的其余各組量也相等,以及它們在解題中的應(yīng)用.
過程
方法通過復(fù)習(xí)旋轉(zhuǎn)的知識,產(chǎn)生圓心角的概念,然后用圓心角和旋轉(zhuǎn)的知識探索在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等,最后應(yīng)用它解決一些具體問題,進(jìn)一步理解和體會研究幾何圖形的各種方法.
情感
態(tài)度激發(fā)學(xué)生觀察、探究、發(fā)現(xiàn)數(shù)學(xué)問題的興趣和欲望.
重點在同圓或等圓中,相等的圓心角所對的弧相等,所對弦也相等及其兩個推論和它們的應(yīng)用.
教學(xué)難點探索定理和推導(dǎo)及其應(yīng)用.
教學(xué)過程設(shè)計
教學(xué)程序及教學(xué)內(nèi)容師生行為設(shè)計意圖
一、導(dǎo)語這節(jié)課我們繼續(xù)研究圓的性質(zhì),請同學(xué)們完成下題.
1.已知△OAB,如圖所示,作出繞O點旋轉(zhuǎn)30°、45°、60°的圖形.
2.圓是中心對稱圖形嗎?將圓旋轉(zhuǎn)任意角度后會出現(xiàn)什么情況?我們學(xué)過的幾何圖形中既是中心對稱圖形,又是軸對稱圖形的是?
二、探究新知
(一)、圓心角定義
在紙上任意畫一個圓,任意畫出兩條不在同一條直線上的半徑,構(gòu)成一個角,這樣的角就是圓心角.如圖所示,∠AOB的頂點在圓心,像這樣,頂點在圓心的角叫做圓心角.
(二)、圓心角、弧、弦之間的關(guān)系定理
1.按下列要求作圖并回答問題:
如圖所示的⊙O中,分別作相等的圓心角∠AOB和∠A′OB′將圓心角∠AOB繞圓心O旋轉(zhuǎn)到∠A?OB?的位置,你能發(fā)現(xiàn)哪些等量關(guān)系?為什么?
得到: 在同一個圓中,相等的圓心角所對的弧相等,所對的弦相等.
2.在等圓中相等的圓心角是否也有所對的弧相等,所對的弦相等呢?
綜合1、2,我們可以得到關(guān)于圓心角、弧、弦之間的關(guān)系定理:
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等.
3.分析定理:去掉“在同圓或等圓中”這個條件,行嗎?
4.定理拓展:
○1在同圓或等圓中,如果兩條弧相等,那么它們所對的圓心角,所對的弦也分別相等嗎?
○2在同圓或等圓中,如果兩條弦相等,那么它們所對的圓心角,所對的弧也分別相等嗎?綜上得到
在同圓或等圓中,相等的弧所對的圓心角相等,所對的弦也相等.
在同圓或等圓中,相等的弦所對的弧相等,所對的圓心角也相等.
綜上所述,同圓或等圓中,兩個圓心角、兩條弧、兩條弦中有一組量相等,就可以推出它們所對應(yīng)的其余各組量也相等.
(三)、定理應(yīng)用
1.課本例1
2.如圖,在⊙O中,AB、CD是兩條弦,OE⊥AB,OF⊥CD,垂足分別為EF.
(1)如果∠AOB=∠COD,那么OE與OF的大小有什么關(guān)系?為什么?
(2)如果OE=OF,那么 與 的大小有什么關(guān)系?AB與CD的大小有什么關(guān)系?為什么?∠AOB與∠COD呢?
三、課堂訓(xùn)練
完成課本83頁練習(xí)
補(bǔ)充:如圖3和圖4,MN是⊙O的直徑,弦AB、CD相交于MN上的一點P,∠APM=∠CPM.
(1)由以上條件,你認(rèn)為AB和CD大小關(guān)系是什么,請說明理由.
(2)若交點P在⊙O的外部,上述結(jié)論是否成立?若成立,加以證明;若不成立,請說明理由.
四、小結(jié)歸納
1.圓心角概念.
2.在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,則它們所對應(yīng)的其余各組量都分別相等,及它們的應(yīng)用.
五、作業(yè)設(shè)計
作業(yè):復(fù)習(xí)鞏固作業(yè)和綜合運用為全體學(xué)生必做;拓廣探索為成績中上等學(xué)生必做.教師布置學(xué)生畫圖,復(fù)習(xí)旋轉(zhuǎn)知識,為探究本節(jié)課定理作鋪墊
學(xué)生通過畫圖復(fù)習(xí)旋轉(zhuǎn)知識,明白繞O點旋轉(zhuǎn),O點就是旋轉(zhuǎn)中心,旋轉(zhuǎn)30°,就是旋轉(zhuǎn)角是30°
學(xué)生畫一個圓,按教師要求操作,觀察,思考,交流,教師給出圓心角定義,
學(xué)生按照要求作圖,并觀察圖形,結(jié)合圓的旋轉(zhuǎn)不變性和相關(guān)知識進(jìn)行思考,嘗試得出關(guān)系定理,再進(jìn)行嚴(yán)格的幾何證明.
學(xué)生思考,類比同圓中得到的結(jié)論進(jìn)行探究,猜想,并驗證
學(xué)生思考,明白該前提條件的不可缺性,師生分析,進(jìn)一步理解定理.
教師引導(dǎo)學(xué)生類比定理獨立用類似的方法進(jìn)行探究,得到推論
學(xué)生審題,理清題中的數(shù)量關(guān)系,由本節(jié)課知識思考解決方法.
教師組織學(xué)生進(jìn)行練習(xí),教師巡回檢查,集體交流評價,教師指導(dǎo)學(xué)生寫出解答過程,體會方法,總結(jié)規(guī)律.
讓學(xué)生嘗試歸納,總結(jié),發(fā)言,體會,反思,教師點評匯總
通過學(xué)生親自動手操作發(fā)現(xiàn)圓的旋轉(zhuǎn)不變性,為后續(xù)探究打下基礎(chǔ)
通過該問題引起學(xué)生思考,進(jìn)行探究,發(fā)現(xiàn)關(guān)系定理,初步感知培養(yǎng)學(xué)生的分析能力,解題能力.
為繼續(xù)探究其推論奠定基礎(chǔ).
感受類比思想,類比中全面透徹地理解和掌握關(guān)系定理和它的推論,并進(jìn)行推廣,得到其他幾個定理,完整的把握所學(xué)知識.
給出一般敘述,以其更好的應(yīng)用.
培養(yǎng)學(xué)生解決問題的意識和能力,體會轉(zhuǎn)化思想,化未知為已知,從而解決本題.
運用所學(xué)知識進(jìn)行應(yīng)用,鞏固知識,形成做題技巧
讓學(xué)生通過練習(xí)進(jìn)一步理解,培養(yǎng)學(xué)生的應(yīng)用意識和能力
歸納提升,加強(qiáng)學(xué)習(xí)反思,幫助學(xué)生養(yǎng)成系統(tǒng)整理知識的習(xí)慣
鞏固深化提高
板 書 設(shè) 計
課題
圓心角、弧、弦之間的關(guān)系定理關(guān)系定理應(yīng)用
1. 2.歸納
本文來自:逍遙右腦記憶 http://www.portlandfoamroofing.com/chusan/69759.html
相關(guān)閱讀:
根與系數(shù)關(guān)系
上一篇:
銳角三角函數(shù)值的求法
下一篇:
中考復(fù)習(xí)一元二次方程及其應(yīng)用學(xué)案
相關(guān)主題
根與系數(shù)關(guān)系
弧長和扇形面積
垂直于弦的直徑
圓心角和圓周角
相關(guān)推薦
推薦閱讀
軸對稱變換
25.3軸對稱變換 任務(wù)分析 教 學(xué) 目 標(biāo)知識技能1.通過實例認(rèn)識軸對稱變換,認(rèn)識軸對稱變換的……
圓和圓的位置關(guān)系
目標(biāo): 知識目標(biāo):經(jīng)歷探索兩個圓之間位置關(guān)系的過程;了解圓與圓之間的幾種位置關(guān)系;了解……
中考復(fù)習(xí)二次函數(shù)的圖象與性質(zhì)(二)學(xué)案
班級_________學(xué)號_________姓名_________ 【課前熱身】 1.(10 濟(jì)南)在平面直角坐標(biāo)系中……
九年級數(shù)學(xué)競賽方程與函數(shù)輔導(dǎo)教案
【例題求解】 【例1】 若關(guān)于的方程 有解,則實數(shù)m的取值范圍 . 思路點撥 可以利用絕對值……
中考復(fù)習(xí)方程與不等式的綜合應(yīng)用學(xué)案
課時9 方程與不等式的綜合應(yīng)用 班級________ 姓名_________ 【課前熱身】 1. 西寧市天然氣……
相關(guān)閱讀
銳角的三角函數(shù)值
建立二次函數(shù)模型
初三上冊數(shù)學(xué)第一章圖形與證明(二)復(fù)習(xí)教
中考數(shù)學(xué)解直角三角形復(fù)習(xí)教案
由樣本推斷總體教案
中考數(shù)學(xué)二次函數(shù)2復(fù)習(xí)
證明(二)導(dǎo)學(xué)案
旋轉(zhuǎn)學(xué)案
中考數(shù)學(xué)不等式(組)的應(yīng)用復(fù)習(xí)
一元二次方程復(fù)習(xí)教案
右腦記憶論壇
|
快速記憶法
|
記憶力培訓(xùn)
|
速讀培訓(xùn)
|
速讀軟件
|
Copyright(C) 2006-2014
逍遙右腦
All Rights Reserved