逍遙右腦記憶網(wǎng)-免費(fèi)提供各種記憶力訓(xùn)練學(xué)習(xí)方法!
超右腦
|
催眠術(shù)
|
潛能開發(fā)
|
影像閱讀
|
右腦開發(fā)訓(xùn)練
|
網(wǎng)站地圖
記憶方法
右腦開發(fā)
快速閱讀
思維導(dǎo)圖
學(xué)習(xí)方法
學(xué)習(xí)計(jì)劃
作文大全
早期教育
勵(lì)志名言
右腦記憶
記憶法
|
記憶宮殿
|
記憶力訓(xùn)練
記憶術(shù)
|
最強(qiáng)大腦
|
右腦記憶法
學(xué)習(xí)方法
高中學(xué)習(xí)方法
|
高考
|
小學(xué)資源
|
單詞記憶
初中學(xué)習(xí)方法
|
中考
|
教案設(shè)計(jì)
|
試題中心
潛能成功
吸引力法則
|
成功學(xué)
|
九型人格
注意力訓(xùn)練
|
潛意識(shí)
|
思維模式
高中學(xué)習(xí)方法
高中語文
高中英語
高中數(shù)學(xué)
高中物理
高中化學(xué)
高中生物
高中政治
高中歷史
高中地理
高中教案
高中試題
高一學(xué)習(xí)方法
高一語文
高一數(shù)學(xué)
高一英語
高一物理
高一化學(xué)
高一生物
高一政治
高一歷史
高一地理
高一學(xué)習(xí)
高二學(xué)習(xí)方法
高二語文
高二數(shù)學(xué)
高二英語
高二物理
高二化學(xué)
高二生物
高二政治
高二歷史
高二地理
高二學(xué)習(xí)
高三學(xué)習(xí)方法
高三語文
高三數(shù)學(xué)
高三英語
高三物理
高三化學(xué)
高三生物
高三政治
高三歷史
高三地理
高三學(xué)習(xí)
逍遙右腦記憶
>
教案設(shè)計(jì)
>
數(shù)學(xué)
>
高二
>
向量的減法
編輯:
逍遙路
關(guān)鍵詞:
高二
來源:
高中學(xué)習(xí)網(wǎng)
課時(shí)3 向量的減法
【學(xué)習(xí)目標(biāo)】
1.掌握向量減法的意義與幾何運(yùn)算,并清楚向量減法與加法的關(guān)系。
2.能正確作出兩個(gè)向量的差向量,并且能掌握差向量的起點(diǎn)和終點(diǎn)的規(guī)律。
3.知道向量的減法運(yùn)算可以轉(zhuǎn)化為加法,是加法的逆運(yùn)算。
4.通過本節(jié)學(xué)習(xí),滲透化歸思想和數(shù)形結(jié)合的思想,繼續(xù)培養(yǎng)識(shí)圖和作圖的能力及用圖形解題的能力。
【知識(shí)梳理】
1.向量減法的定義:向量a加上的b相反向量,叫做a與b的差。
即:a ? b = a + (?b) 求兩個(gè)向量差的運(yùn)算叫做向量的減法。
2.用加法的逆運(yùn)算定義向量的減法:向量的減法是向量加法的逆運(yùn)算:
若b + x = a,則x叫做a與b的差,記作a ? b
【例題選講】
例1.化簡(jiǎn):
例2.如圖,O是平行四邊形ABCD的對(duì)角線的交點(diǎn),若 ,試證: + - =
例3.如圖,ABCD是一個(gè)梯形,AB//CD,且AB=2CD,M、N分別是DC和AB的中點(diǎn),已知 , ,試用 , 表示 和
【歸納反思】
1.向量和它的相反向量的和為零向量。
2.向量的減法是加法的逆運(yùn)算。
3.減去一個(gè)向量,等于加上它的相反向量。
4.重要不等式:
【課內(nèi)練習(xí)】
1.下面有四個(gè)等式:①-(- )= ;② - = ;③ +(- )= - ;④ - = ,其中正確的等式為
2.在平行四邊形ABCD中, , , , ,則下列等式不成立的是
A B C D
3.若 , 為非零向量,則在下列命題中真命題為
① = , , 同向共線; ② = , , 反向共線
③ = , , 有相等的模; ④ , 同向共線
4.已知 =10, =8,則 的取值范圍為
5.在矩形ABCD中,O為對(duì)角線AC,BD的交點(diǎn),且 , , ,
證明:
【鞏固提高】
1.下列四式中不能化為 的是
A B
C D
2.如圖,在△ABC中,D、E、F分別為AB、BC、CA的中點(diǎn),則 等于
A B
C D
3.在平行四邊形ABCD中,設(shè) ,記 , ,則 為
A B C D
4.正六邊形ABCDEF,若 , ,則 為
A B C D
5.在平面上有三點(diǎn)A、B、C,設(shè) , ,若 的長(zhǎng)度相等,則有
A A、B、C三點(diǎn)在一條直線上 B 必為等腰三角形且B為頂角
C 必為直角三角形且B為直角 D 必為等腰直角三角形
6.在四邊形ABCD中, , ,則四邊形ABCD為 形
7.已知向量 的終點(diǎn)與向量 的起點(diǎn)重合,向量 的起點(diǎn)與向量 的終點(diǎn)重合,則下列結(jié)論正確的為
①以 的起點(diǎn)為終點(diǎn), 的起點(diǎn)為起點(diǎn)的向量為 -( + )
②以 的起點(diǎn)為終點(diǎn), 的終點(diǎn)為起點(diǎn)的向量為- - -
③以 的起點(diǎn)為終點(diǎn), 的終點(diǎn)為起點(diǎn)的向量為- -
8.在 中,若 ,則邊AB與邊AD所夾的角=
9.已知兩個(gè)合力 的夾角是直角,且知它們的合力 與 的夾角為 , =10N,求 的大小。
10.如圖,P、Q是 ABC的邊BC上的兩點(diǎn),且BP=QC,
求證:
11.若 , 是給定的不共線向量,試求滿足下列條件的向量 , 使
2 - =
并作圖用 , 表示 ,
+2 =
本文來自:逍遙右腦記憶 http://www.portlandfoamroofing.com/gaoer/56188.html
相關(guān)閱讀:
空間向量基本定理學(xué)案練習(xí)題
上一篇:
幾何圓錐曲線
下一篇:
曲線的參數(shù)方程
相關(guān)主題
空間向量基本定理學(xué)案練習(xí)題
直線的參數(shù)方程學(xué)案
莖葉圖
平行向量的坐標(biāo)表示
二元一次不等式表示的平面區(qū)域
向量的概念及表示
平面向量坐標(biāo)表示
共面向量定理學(xué)案練習(xí)題
數(shù)列的概念
等比數(shù)列的通項(xiàng)及性質(zhì)
相關(guān)推薦
推薦閱讀
合情推理
2.1合情推理 一、教材分析 數(shù)學(xué)歸納法是人教A版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書選修2-2第2章第……
條件語句
j.Co M 課題:條件語句 一、目標(biāo): 1、知識(shí)與技能目標(biāo):通過實(shí)例掌握條件語句的格式及程序……
算法的三種基本邏輯結(jié)構(gòu)和框圖表示
j.Co M 課題:§1.1.3算法的三種基本邏輯結(jié)構(gòu)和框圖表示 目標(biāo)1.知識(shí)與技能:通過設(shè)計(jì)流程……
遞推數(shù)列中的通項(xiàng)公式
【目標(biāo)】1.掌握數(shù)列的通項(xiàng)公式和前n項(xiàng)和的關(guān)系,并能由數(shù)列前n項(xiàng)和求出通項(xiàng)公 式;能解決……
高二數(shù)學(xué)計(jì)數(shù)原理復(fù)習(xí)學(xué)案
計(jì)數(shù)原理復(fù)習(xí)(2) 一、知識(shí)點(diǎn): 1.根據(jù)具體問題的特征選擇計(jì)數(shù)原理,利用排列、組合知識(shí)……
相關(guān)閱讀
高二數(shù)學(xué)計(jì)數(shù)原理復(fù)習(xí)學(xué)案
空間向量的坐標(biāo)表示學(xué)案練習(xí)題
向量的乘法
數(shù)量積
直線的參數(shù)方程學(xué)案
二元一次不等式組表示的平面區(qū)域
古典概型
向量的加減法運(yùn)算
高二數(shù)學(xué).3.2 事件的獨(dú)立性學(xué)案
常見的數(shù)列求和及應(yīng)用
右腦記憶論壇
|
快速記憶法
|
記憶力培訓(xùn)
|
速讀培訓(xùn)
|
速讀軟件
Copyright(C) 2006-2014
逍遙右腦
All Rights Reserved