年高考數(shù)學(xué)總復(fù)習(xí) 12-1 幾何證明選講但因?yàn)闇y(cè)試 新人教B版
1. (2011•廣州調(diào)研)如圖,四邊形ABCD內(nèi)接于⊙O,BC是直徑,N與⊙O相切,切點(diǎn)A,∠AB=35°,則∠D=( )A.35° B.90°C.125° D.150°[答案] C[解析] 連接BD,則∠AB=∠ADB=35°,由BC是直徑,知∠BDC=90°,所以∠D=∠ADB+∠BDC=125°.2.()如圖所示,在▱ABCD中,BC=24,E、F為BD的三等分點(diǎn),則B-DN=( )A.6 B.3 C.2 D.4[答案] A[解析] ∵E、F為BD的三等分點(diǎn),四邊形為平行四邊形,∴為BC的中點(diǎn),連CF交AD于P,則P為AD的中點(diǎn),由△BCF∽△DPF及為BC中點(diǎn)知,N為DP的中點(diǎn),∴B-DN=12-6=6,故選A.(理)如圖,E是▱ABCD邊BC上一點(diǎn),BEEC=4,AE交BD于F,BFFD等于( )A.45 B.49 C.59 D.410[答案] A[解析] 在AD上取點(diǎn)G,使AG?:GD=1?:4,連結(jié)CG交BD于H,則CG∥AE,∴BFFH=BECE=4,DHFH=DGGA=4,∴BFFD=45.3.()(2010•廣東中)如圖,⊙O與⊙O′相交于A和B,PQ切⊙O于P,交⊙O′于Q和,交A B的延長(zhǎng)線于N,N=3,NQ=15,則PN=( )A.3 B.15 C.32 D.35[答案] D[解析] 由切割線定理知:PN2=NB•NA=N•NQ=3×15=45,∴PN=35.(理)(2011•海淀期末)如圖,半徑為2的⊙O中,∠AOB=90°,D為OB的中點(diǎn),AD的延長(zhǎng)線交⊙O于點(diǎn)E,則線段DE的長(zhǎng)為( )A.55 B.255 C.355 D.32[答案] C[解析] 延長(zhǎng)BO交圓O于點(diǎn)F,由D為OB的中點(diǎn),知DF=3,DB=1,又∠AOB=90°,所以AD =5,由相交弦定理知AD•DE=DF•DB,即5DE=3×1,解得DE=355.4.如圖所示,矩形ABCD中,AB=12,AD=10,將此矩形折疊使點(diǎn)B落在AD邊的中點(diǎn)E處,則折痕FG的長(zhǎng)為( )A.13 B.635C.656 D.636[答案] C[解析] 過(guò)點(diǎn)A作AH∥FG交DG于H,則四邊形AFGH為平行四邊形.∴AH=FG.∵折疊后B點(diǎn)與E點(diǎn)重合,折痕為FG,∴B與E關(guān)于FG對(duì)稱.∴BE⊥FG,∴BE⊥AH.∴∠ABE=∠DAH,∴Rt△ABE∽R(shí)t△DAH.∴BEAB=AHAD.∵AB=12,AD=10,AE=12AD=5,∴BE=122+52=13,∴FG=AH=BE•ADAB=656.5.()兩個(gè)相似三角形,面積分別為16c2和49c2,它們的周長(zhǎng)相差6c,則較大三角形的周長(zhǎng)為( )A.21c B.2c C.14c D.9811c[答案] C[解析] 由 相似三角形面積比等于相似比的平方,周長(zhǎng)比等于相似比知,周長(zhǎng)之比為:4916=74,設(shè)周長(zhǎng)分別為7x和4x,則7x-4x=6,∴x=2,∴較大三角形的周長(zhǎng)為14c.(理)如圖,D、E分別是△ABC的邊AB、AC上的點(diǎn),DE∥BC且ADDB=2,那么△ADE與四邊形DBCE的面積比是( )[A.23 B.25C.45 D.49[答案] C[解析] ∵DE∥BC,∴△ADE∽△ABC,∴S△ADES△ABC=ADAB2,∵ADDB=2,∴ADAB=23,∴S△ADE=49S△ABC,∴S四邊形DEBC=59S△ABC,∴S△ADES四邊形DBCE=45,故選C.6.如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AP和過(guò)C的切線互相垂直,垂足為P,過(guò)B的切線交過(guò)C的切線于T,PB交⊙O于Q,若∠BTC=120°,AB=4,則PQ•PB=( )A.2 B.3 C.3 D.23[答案] B[解析] 連接OC、AC,則OC⊥PC,則O、C、T、B四點(diǎn)共圓,∵∠BTC=120°,∴∠COB=60°,故∠AOC=120°.由AO=OC=2知AC=23,在Rt△APC中,∠ACP=12∠AOC=60°,因此PC=3.根據(jù)切割線定理得PQ•PB=PC2=3.7.()(2011•西安質(zhì)檢)如圖是某高速公路一個(gè)隧道的橫截面,若它的形狀是以O(shè)為圓心的圓的一部分,路面AB=10米,凈高CD=7米,則此圓的半徑OA=________米.[答案] 377[解析] 設(shè)⊙O的半徑為R,則在Rt△OAD中,OA2=OD2+AD2,即R2=(102)2+(7-R)2,解得R=377米.(理)(2011•深圳調(diào)研)如圖,AB是半圓O的直徑,C是半圓O上異于A,B的點(diǎn),CD⊥AB,垂足為D,已知AD=2,CB=43,則CD=________.[答案] 23[解析] 根據(jù)射影定理得CB2=BD×BA,即(43)2=BD(BD+2),得BD=6,又CD2=AD×BD=12,所以CD=12=23.8.(2011•深圳調(diào)研)如圖,割線PBC經(jīng)過(guò)圓心O,OB=PB=1,OB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)120°到OD,連PD交圓O于點(diǎn)E,則PE=________.[答案] 377[解析] ∵∠POD=120°,OD=OB=1,PO=2,∴PD=PO2+OD2-2OD•PO•cos120°=7,由相交弦定理得,PE•PD=PB•PC,∴PE=PB•PCPD=1×37=377.9.()(2011•北京西城區(qū)模擬)如圖,從圓O外一點(diǎn)P引圓O的切線PA和割線PBC,已知PA=22,PC=4,圓心O到BC的距離為3,則圓O的半徑為_(kāi)_______.[答案] 2[解析] 設(shè)圓O的半徑為R.依題意得PA2=PB•PC,∴PB=PA2PC=2,BC=PC-PB=2,∴R=12BC2+32=2,即圓O的半徑為2.(理)(2010•廣東中市四校聯(lián)考)如圖,PA切圓O于點(diǎn)A,割線PBC經(jīng)過(guò)圓心O,OB=PB=1,OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°到OD,則PD的長(zhǎng)為_(kāi)_______.[答案] 7[解析] 由圖可知,PA2=PB•PC=PB•(PB+BC)=3,∴PA=3,∴∠AOP=60°,又∠AOD=60°,∴∠POD=120°,∵PO=2,OD=1,∴cos∠POD=22+12-PD22×2×1=-12,∴PD=7.10.(2011•杭州市高三聯(lián)考)如圖,圓O的直徑AB=1 0,弦DE⊥AB于點(diǎn)H,AH=2.(1)求DE的長(zhǎng);(2)延長(zhǎng)ED到P,過(guò)P作圓O的切線,切點(diǎn)為C,若PC=25,求PD的長(zhǎng).[解析] (1)連接AD,DB,由于AB為圓O的直徑,∴AD⊥DB. 又AB⊥DE,DH=HE,∴DH2=AH×BH=2×(10-2)=16,DH=4,DE=8.(2)PC切圓O于點(diǎn)C,PC2=PD×PE,∴(25)2=PD(PD+8),∴PD=2.11.()(2011•廣東汕頭測(cè)試)如圖,正△ABC的 邊長(zhǎng)為2,點(diǎn),N分別是邊AB,AC的中點(diǎn),直線N與△ABC的外接圓的交點(diǎn)為P,Q,則線段P=________.[答案] 5-12[解析] 設(shè)P=x,則QN=x,由相交弦定理可得P•Q=B•A即x•(x+1)=1,解得x=5-12.(理)(2011•佛質(zhì)檢)如圖,AB,CD是半徑為a的圓O的兩條弦,它們相交于AB的中點(diǎn)P,PD=23a,∠OAP=30°,則CP=________.[答案] 9a8[解析] 因?yàn)辄c(diǎn)P是AB的中點(diǎn),由 垂徑定理知,OP⊥AB.在Rt△OPA中,BP=AP=acos30°=32a.由相交弦定理知,BP•AP=CP•DP,即32a•32a=CP•23a,所以CP=98a.12.()(2011•惠州市模擬)如圖,⊙O的割線PAB交⊙O于A、B兩點(diǎn),割線PCD經(jīng)過(guò)圓心O,已知PA=6,AB=223,PO=12,則⊙O的半徑是________.[答案] 8[解析] 設(shè)⊙O的半徑是R,∵PA•PB=PC•PD=(PO-R)(PO+R)=PO2-R2,∴PA(PA+AB)=PO2-R2,將PA=6,AB=223,PO=12代入得R=8.(理)(2010•天津理)如下圖,四邊形ABCD是 圓O的內(nèi)接四邊形,延長(zhǎng)AB和DC相交于點(diǎn)P,若PBPA=12,PCPD=13,則BCAD的值為_(kāi)_________.[答案] 66[解析] 由割線定理知:PB•PA=PC•PD,又∵PA=2PB,PD=3PC,∴PB•2PB=13PD•PD,∴PB2=16PD2,∴PB=66PD,又∵△PBC∽△PDA,∴BCAD=PBPD=66.13.如圖,EB、EC是⊙O的兩條切線,B、C是切點(diǎn),A、D是⊙O上兩點(diǎn),如果∠E=46°,∠DCF=32°,則∠A的度數(shù)是________.[答案] 99°[解析] 連接OB、OC、AC,根據(jù)弦切角定理得,∠EBC=∠BAC,∠CAD=∠DCF,可得∠A=∠BAC+∠CAD=12(180°-∠E)+∠DCF=67°+32°=99°.[點(diǎn)評(píng)] 可由EB=EC及∠E求得∠ECB,由∠ECB和∠DCF求得∠BCD,由圓內(nèi)接四邊形對(duì)角互補(bǔ)求得∠A.14.()(2010•遼寧)如圖,△ABC的角平分線AD的延長(zhǎng)線交它的外接圓于點(diǎn)E.(1)證明:△ABE∽△ADC;(2)若△ABC的面積S=12AD•AE,求∠BAC的大。[解析] (1)∵AD為∠BAC的角平分線[∴∠BAE=∠C AD又∵∠AEB與∠ACB為AB?所對(duì)的圓周角∴∠AEB=∠ACD∴△ABE∽△ADC.(2)由(1)可知△ABE∽△ADC故ABAE=ADAC,即AB•AC=AD•AE ①又S=12AB•ACsin∠BAC且S=12AD•AE∴12AB•ACsin∠BAC=12AD•AE ②由①②式得 sin∠BAC=1∵∠BAC為三角形內(nèi)角,∴∠BAC=90°(理)如圖以Rt△ABC的直角邊AB為直徑作⊙O,與斜邊AC交于點(diǎn)D,E為BC邊的中點(diǎn).(1)求證:DE是⊙O的切線;(2)連結(jié)OE、AE,當(dāng)∠CAB為何值時(shí),四邊形AOED是平行四邊形,并在此條件下求sin∠CAE的值.[解析] (1)在△OBE與△ODE中,OB=OD,OE=OE.∵E、O分別為BC、AB中點(diǎn).∴EO∥AC,∴∠EOB=∠DAO,∠DOE=∠ADO,又∠OAD=∠ADO,∴∠EOB=∠DOE,∴△OBE≌△ODE,∴∠ODE=∠OBE=90°,∴ED是⊙O的切線.(2)∠CAB=45°,sin∠CAE=1010.15.()(2011•西太原模擬 )如圖,AB是半圓O的直徑,C是圓周上一點(diǎn)(異于A、B),過(guò)C作圓O的切線l,過(guò)A作直線l的垂線AD,垂足為D,AD交半圓于點(diǎn)E.求證:CB=CE.[證明] 證法一:連結(jié)BE.因?yàn)锳B是半圓O的直徑,E為圓周上一點(diǎn),所以∠AEB=90°,即BE⊥AD.又因?yàn)锳D⊥l,所以BE∥l.所以∠DCE=∠CEB.因?yàn)橹本l是圓O的切線,所以∠DCE=∠CBE,所以∠CBE=∠CEB,所以CE=CB.證法二:連結(jié)AC,BE,在DC延長(zhǎng)線上取一點(diǎn)F.因?yàn)锳B是半圓O的直徑,C為圓周上一點(diǎn).所以∠ACB=90°,即∠BCF+∠ACD=90°.又因?yàn)锳D⊥l,所以∠DAC+∠ACD=90°,所以∠BCF=∠DAC.[又因?yàn)橹本l是圓O的切線,所以∠CEB=∠BCF.又∠DAC=∠CBE,所以∠CBE=∠CEB.所以CE=CB.(理)如圖,AB是圓O的直徑,C是半徑OB的中點(diǎn),D是AB延長(zhǎng)線上一點(diǎn),且BD=OB,直線D與圓O相交于點(diǎn),T(不與A、B重合),DN與圓O相切于點(diǎn)N,連接C,B,OT.(1)求證:DT•D=DO•DC;(2)若∠DOT=60°,試求∠BC的大小.[解析] (1)證明:因D與圓O相交于點(diǎn)T,由切割線定理得,DN2=DT•D,DN2=DB•DA,所以DT•D=DB•DA,設(shè)半徑OB=r(r>0),因BD=OB,且BC=OC=r2,則DB•DA=r•3r=3r2,DO•DC=2r•3r2=3r2.所以DT•D=DO•DC.(2)由(1)可知,DT•D=DO•DC,且∠TDO=∠CD,故△DTO∽△DC,所以∠DOT=∠DC.根據(jù)圓周角定理得,∠DOT=2∠DB,則∠BC=30°.16.(2011•新標(biāo)全國(guó),22)如圖,D,E分別為△ABC的邊AB,AC上的點(diǎn),且不與△ABC的頂點(diǎn)重合,已知A E的長(zhǎng)為,AC的長(zhǎng)為n,AD,AB的長(zhǎng)是關(guān)于x的方程x2-14x+n=0的兩個(gè)根.(1)證明:C,B,D,E四點(diǎn)共圓;(2)若∠A=90°,且=4,n=6,求C,B,D,E所在圓的半徑.[解析] (1)連結(jié)DE,根據(jù)題意在△ADE和△ACB中,AD×AB=n=AE×AC,即ADAC=AEAB.又∠DAE=∠CAB,從而△ADE∽△ACB.因此∠ADE=∠ACB.所以C,B,D,E四點(diǎn)共圓.(2)=4,n=6時(shí),方程x2-14x+n=0的兩根為x1=2,x2=12.故AD=2,AB=12.取CE的中點(diǎn)G,DB的中點(diǎn)F,分 別過(guò)G,F(xiàn)作AC,AB的垂線,兩垂線相交于H點(diǎn),連結(jié)DH.因?yàn)镃,B,D,E四點(diǎn)共圓,所以C,B,D,E四點(diǎn)所在圓的圓心為H,半徑為DH,由于∠A=90°,故GH∥AB,HF∥AC.從而HF=AG=5,DF=12(12-2)=5.故C,B,D,E四點(diǎn)所在圓的半徑為52.1.(2011•廣東湛江高考調(diào)研)如圖,圓O上一點(diǎn)C在直徑AB上的射影為D,AD=2,AC=25,則AB=________.[答案] 10[解析] 由射影定理知,AC2=AD•AB,所以AB=2522=10.2.如圖所示,已知AB為半⊙O的直徑,直線N切半圓于點(diǎn)C,AD⊥N于點(diǎn)D,BE⊥N于點(diǎn)E,BE交半圓于點(diǎn)F,AD=3c,BE=7c.(1)則⊙O的半徑為_(kāi)_______;(2)則線段DE的長(zhǎng)為_(kāi)_______.[答案] 5c;221c[解析] (1)連接OC.∵N切半圓于點(diǎn)C,∴OC⊥N.∵AD⊥N,BE⊥N,∴AD∥OC∥BE.∵OA=OB,∴CD=CE.∴OC=12(AD+BE)=5c.∴⊙O的半徑為5c.(2)連接AF.∵AB為半⊙O的直徑,∴∠AFB=90°.∴∠AFE=90°.又∵∠ADE=∠DEF=90°,∴四邊形ADEF為矩形.∴DE=AF,AD=EF=3c.在RtABF中,BF=BE-EF=4c,AB=2OC=10c.∴AF=AB2-BF2=102-42=221,∴DE=221c.3.(2010•廣東)如圖,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=a2,點(diǎn)E,F(xiàn)分別為線段AB、AD的中點(diǎn),則EF=__________.[答案] a2[解析] 如圖連結(jié)DE,BE?CD,∴CDEB為矩形,∴DE⊥AB,DE又為中線,∴AD=DB=a,EF為中位線,∴EF=a2.[點(diǎn)評(píng)] 也可以用直角三角形斜邊上的中線等于斜邊的一半求解.4.(2010•深圳市調(diào)研)如圖,已知PA是⊙O的切線,A是切點(diǎn),直線PO交⊙O于B、C兩點(diǎn),D是OC的中點(diǎn),連接AD并延長(zhǎng)交⊙O于點(diǎn)E.若PA=23,∠APB=30°,則AE=________.[答案] 1077[解析] ∵PA是⊙O的切線,∴OA⊥PA,在直角三角形PAO中,tan30°=AOPA=33.∵PA=23,∴AO=PA•33=2,即圓O的半徑為r=2,同理sin30°=AOPO=12,∴PO=4.∵D是OC的中點(diǎn),∴OD=DC=1,從而B(niǎo)D=BO+OD=2+1=3,PD=PO+OD=4+1=5,在三角形PAD中,由余弦定理得:AD2=PA2+PD2-2PA•PD•cos30°=(23)2+52-2×23×5×32=7,∴AD=7,再由相交弦定理得:AD•DE=BD•DC,即7•DE=3×1=3,DE=377,∴AE=AD+DE=7+377=1077.5.(2011•北京朝陽(yáng)區(qū)統(tǒng)考)如圖,AB是⊙O的直徑,CB切⊙O于點(diǎn)B,CD切⊙O于點(diǎn)D,直線CD交AB于點(diǎn)E.若AB=3,ED=2,則CB的長(zhǎng)為_(kāi)_______.[答案] 3[解析] 由切割線定理得,ED2=EA•EB,∴4=EA(EA+3),∴EA=1,∵CB是⊙O的切線,∴EB⊥CB,∴EB2+CB2=CE2,又∵CD是⊙O的切線,∴CD=CB,∴42+CB2=(CB+2)2,∴CB=3.6.(2011•北京西域區(qū)期末)如圖所示,過(guò)圓C外一點(diǎn)P做一條直線與圓C交于A,B兩點(diǎn),AB=2AP,PT與圓C相切于T點(diǎn).已知圓C的半徑為2,∠CAB=30°,則PT=________.[答案] 3[解析] ∵AC=2,∠CAB=30°,∴AB=2ACcos30°=2×2×32=23,∴AP=12AB=3,∴PB=AP+AB=33,∵PT是⊙C的切線,∴PT2=AP•PB=9,∴PT=3.7.(2011•廣東理,15)如下圖,過(guò)圓O外作一點(diǎn)P分別作圓的切線和割線交圓于A,B,且PB=7,C是圓上一點(diǎn)使得BC=5,∠BAC=∠APB,則AB=________.[答案] 35[解析] 由圓的切線性質(zhì)可知∠PAB=∠ACB,又∠APB=∠BAC,所以△PAB∽△ACB,所以ABBC=PBAB,而B(niǎo)C=5,PB=7,∴AB5=7AB,∴AB2=35,AB=35.8.(2011•湖南理,11)如下圖,A,E是半圓周上的兩個(gè)三等分點(diǎn),直徑BC=4,AD⊥BC,垂足為D,BE與AD相交于點(diǎn)F,則AF的長(zhǎng)為_(kāi)_______.[答案] 233[解析] 如圖,連結(jié)CE,OA,AB,∵A、E是半圓周上的兩個(gè)三等分點(diǎn),BC為直徑,∴∠CEB=90°,∠CBE=30°,∠AOB=60°,又OA=2,∴AD=3,OD=BD=1,∴DF=33,∴AF=AD-DF=233.9.(2011•天津,13)如圖,已知圓中兩條弦AB與CD相交于點(diǎn)F,E是AB延長(zhǎng)線上一點(diǎn),且DF=CF=2,AF?:FB?:BE=4?:2?:1.若CE與圓相切,則線段CE的長(zhǎng)為_(kāi)_______.[答案] 72[解析] 由題意:AF•FB=DF•FC=2AFFB=2∴AF=2,F(xiàn)B=1,∴BE=12,AE=AF+BF+BE=72.由切割線定理得:CE2=BE•AE=12×72=74.∴CE=72.10.(2011•遼寧,22)如圖,A、B、C、D四點(diǎn)在同一圓上,AD的延長(zhǎng)線與BC的延長(zhǎng)線交于E點(diǎn),且EC=ED.(1)證明:CD∥AB; (2)延長(zhǎng)CD到F,延長(zhǎng)DC到G,使得EF=EG,證明:A、B、G、F四點(diǎn)共圓.[解析] (1)因?yàn)镋C=ED,所以∠EDC=∠ECD.因?yàn)锳,B,C,D四點(diǎn)在同一圓上,所以∠EDC=∠EBA.故∠ECD=∠EBA.所以CD∥AB.(2)由(1)知,AE=BE,因?yàn)镋F=EG,故∠EFD=∠EGC,從而∠FED= ∠G EC.連接AF,BG,則△EFA≌△EGB,故∠FAE=∠GBE.又CD∥AB,∠EDC=∠ECD,所以∠FAB=∠GBA.所以∠AFG+∠GBA=180°.故A、B、G、F四點(diǎn)共圓.11.(2010•江蘇)如圖AB是⊙O的直徑,D為⊙O上一點(diǎn),過(guò)點(diǎn)D作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)C,若DA=DC,求證:AB=2BC[解析] 連結(jié)OD、BD.因?yàn)锳B是圓O的直徑,所以∠ADB=90°,AB=2OB ,因?yàn)镈C是圓O的切線,所以∠CDO=90°.又因?yàn)镈A=DC,所以∠A=∠C,于是△ADB≌△CDO,從而AB=CO,即2OB=OB+BC,得OB=BC.故AB=2BC.12.(2010•新標(biāo)全國(guó)理)如圖,已知圓上的弧AC?=BD?,過(guò)C點(diǎn)的圓的切線與BA的延長(zhǎng)線交于E點(diǎn),證明:(1)∠ACE=∠BCD;(2)BC2=BE×CD.[解析] (1)因?yàn)锳C?=BD?.所以∠BCD=∠ABC.又因?yàn)镋C與圓相切于點(diǎn)C,故∠ACE=∠ABC,所以∠ACE=∠BCD.(2)因?yàn)椤螮CB=∠CDB,∠EBC=∠BCD,所以△BDC∽△ ECB,故BCBE=CDBC,即BC2=BE×CD.
右腦記憶論壇 | 快速記憶法 | 記憶力培訓(xùn) | 速讀培訓(xùn) | 速讀軟件
Copyright(C) 2006-2014 逍遙右腦 All Rights Reserved