第二十一時 對數(shù)(2)一、內(nèi)容及其解析(一)內(nèi)容:對數(shù)的運算性質(zhì)及其推導(dǎo),對數(shù)運算性質(zhì)的簡單應(yīng)用(二)解析:本節(jié)是關(guān)于對數(shù)的一節(jié)推理,是高中新改人教A版教材第二的第二節(jié)的第二節(jié).在此之前,學(xué)生已經(jīng)學(xué)習(xí)過了對數(shù)的概念、指數(shù)的運算性質(zhì)并了解了指數(shù)與對數(shù)之間的關(guān)系,對數(shù)的運算性質(zhì)就是在此基礎(chǔ)上展開討論的。本節(jié)的重點是對數(shù)的運算性質(zhì);難點是對數(shù)運算性質(zhì)的推導(dǎo)。從指數(shù)與對數(shù)的關(guān)系以及指數(shù)運算性質(zhì),推導(dǎo)得到對數(shù)的運算性質(zhì),學(xué)生在學(xué)習(xí)過程中可能感覺難以入手,這時,教師可以以第一個運算性質(zhì)的推導(dǎo)為例,向?qū)W生展示推導(dǎo)的思路,再引導(dǎo)學(xué)生進行第二個和第三個運算性質(zhì)的推導(dǎo)并引導(dǎo)學(xué)生分析運算性質(zhì)成立的條。之后再通過一些題目考察學(xué)生對對數(shù)運算性質(zhì)的應(yīng)用。二、目標(biāo)及其解析(一)目標(biāo)1,掌握并能夠推導(dǎo)對數(shù)的運算性質(zhì);2,能夠正確應(yīng)用對數(shù)的運算性質(zhì)處理相關(guān)問題.(二)解析1,掌握并能夠推導(dǎo)對數(shù)的運算性質(zhì)指的是:(1)正確記憶對數(shù)的運算性質(zhì);(2)理解對數(shù)運算性質(zhì)的使用條;(3)能從指數(shù)與對數(shù)的關(guān)系以及指數(shù)運算性質(zhì)出發(fā),推導(dǎo)得出相應(yīng)對數(shù)的運算性質(zhì)。2,能夠應(yīng)用對數(shù)的運算性質(zhì)處理相關(guān)問題指的是:能夠正確使用對數(shù)的運算法則;運算結(jié)果的表達正確;對于一些較復(fù)雜的運算問題能綜合運用對數(shù)的運算法則進行運算推理。三、問題診斷分析 本節(jié)容易出現(xiàn)的問題是:學(xué)生從指數(shù)的運算法則推導(dǎo)出對數(shù)的運算法則很難入手。要解決這一問題,教師要做好示范,以第一個運算性質(zhì)的推導(dǎo)為例,從指數(shù)和對數(shù)的關(guān)系出發(fā),通過設(shè)中間量和恒等變形,達到轉(zhuǎn)化的目的。對于第二個和第三個運算性質(zhì),要由教師提出具體的問題,讓學(xué)生類比第一個性質(zhì)的推導(dǎo)過程,自主探索,教師巡視并給予適當(dāng)指導(dǎo)。四、教學(xué)過程設(shè)計學(xué)習(xí)要求 1.掌握對數(shù)的運算性質(zhì),并能理解推導(dǎo)這些法則的依據(jù)和過程;2.能較熟練地運用這些法則和聯(lián)系的觀點解決問題; 自學(xué)評價1.指數(shù)冪運算的性質(zhì)(1) 2. 對數(shù)的運算性質(zhì)如果 a > 0 , a 1, > 0 ,N > 0, 那么(1) ;(2) (3) (2) (3) 說明:(1)語言表達:“積的對數(shù) = 對數(shù)的和”……(簡易表達以幫助記憶);(2)注意有時必須逆向運算:如 ;(3)注意性質(zhì)的使用條:每一個對數(shù)都要有意義。 是不成立的,是不成立的(4)當(dāng)心記憶錯誤:,試舉反例, ,試舉反例。(5)對數(shù)的運算性質(zhì)實際上是將積、商、冪的運算分別轉(zhuǎn)化為對數(shù)的加、減、乘的運算。【精典范例】例1:用 , , 表示下列各式:(1) ;(2) .分析:應(yīng)用對數(shù)運算的性質(zhì)可直接得出。【解】(1)原式 ;(2)原式 例2:求下列各式的值:(1) ; (2) ;(3) ; (4) 【解】(1) (2) (3) (4) 點評: 熟練掌握對數(shù)的運算性質(zhì)并能逆用性質(zhì)是解題的關(guān)鍵。例3:已知 ,求下列各式的值(結(jié)果保留4位小數(shù)): (1) ; (2) 【解】(1) (2) 點評:尋找已知條與所求結(jié)論的內(nèi)在聯(lián)系這是解題的一般途徑。。例4:計算:(1) 14 ; ;(3) 【解】(1)解法一: 解法二: = ;(2)原式 (3)原式 點評:靈活運用對數(shù)運算法則進行對數(shù)運算,要注意法則的正用和逆用。在化簡變形的過程中,要善于觀察比較和分析,從而選擇快捷、有效的運算方案。是一個重要的結(jié)論。追蹤訓(xùn)練一1. 用 , , 表示: 2.求值:(1) (2) 3. 已知 ,求 的值(結(jié)果保留4位小數(shù)):答案:1. 2.(1)-32。ǎ玻3. 【選修延伸】一、對數(shù)與方程 例5:已知 ,求 之間的關(guān)系。分析:由于 在冪的指數(shù)上,所以可考慮用對數(shù)式表示出 。【解】∵ ,∴兩邊取以10為底的對數(shù)得: ∴ ,∵ ∴ 點評:本題要求關(guān)于 的代數(shù)式的值,必須對已知等式兩邊取對數(shù),恰當(dāng)?shù)倪x取對數(shù)的底數(shù)是十分重要的,同時 是關(guān)鍵。例6.設(shè) ,求: 的值分析:本題只需求出 的值,從條式出發(fā),設(shè)法變形為 的方程。【解】當(dāng) 時,原式可化為: ,即 ,∴ 或 (舍)∴ 思維點拔:本題在求 時,不是分別求出 的值,而是把 看成一個字母,這種方法稱為“整體”思想方法。 是關(guān)于 的齊次式,對于齊次式通常都用本題的方法處理。對于連比式,通常對等式兩邊取對數(shù),轉(zhuǎn)化為對數(shù)運算,同時化對數(shù)的底數(shù)相同也是解決對數(shù)問題的常用策略.追蹤訓(xùn)練二1.設(shè) ,求 的值。2.已知: ,求 答案:1.∵ ∴ ∴ ∴
2.(法一)由對數(shù)定義可知: .(法二)由已知移項可得 ,即 ,由對數(shù)定義知: ,∴ .(法三) ,
右腦記憶論壇 | 快速記憶法 | 記憶力培訓(xùn) | 速讀培訓(xùn) | 速讀軟件
Copyright(C) 2006-2014 逍遙右腦 All Rights Reserved