空間幾何體的體積

編輯: 逍遙路 關(guān)鍵詞: 高一 來源: 高中學(xué)習(xí)網(wǎng)
總 課 題空間幾何體的表面積和體積總課時(shí)第17課時(shí)
分 課 題空間幾何體的體積(二)分課時(shí)第 2 課時(shí)
目標(biāo)初步掌握求體積的常規(guī)方法,例如割補(bǔ)法,等積轉(zhuǎn)換等.
重點(diǎn)難點(diǎn)割補(bǔ)法,等積轉(zhuǎn)換等方法的運(yùn)用.
?引入新課
1.如圖,在三棱錐 中,已知 , , ,
,且 .求證:三棱錐 的體積為 .

2.一個(gè)圓錐形的空杯子上面放著一個(gè)半球形的冰淇淋,如果將冰淇淋全部放入杯中,
能放下嗎?


?例題剖析
例1  將半徑分別為 、 、 的三個(gè)錫球熔成一個(gè)大錫球,
求這個(gè)大錫球的表面積.


?鞏固練習(xí)
1.兩個(gè)球的體積之比為 ,則這兩個(gè)球的表面積之比是_____________________.
2.若兩個(gè)球的表面積之差為 ,兩球面上兩個(gè)大圓周長之和為 ,則這兩球
的半徑之差為_____________________________.
3.如果一個(gè)圓柱和一個(gè)圓錐的底面直徑和高都與球的直徑相等.
求證:圓柱、球、圓錐體積的比是 .

?課堂小結(jié)
割補(bǔ)法,等積轉(zhuǎn)換等方法的運(yùn)用.
?課后訓(xùn)練
一 基礎(chǔ)題
1.一個(gè)圓錐的底面半徑和一個(gè)球的半徑相等,體積也相等,則它們的高度之比為______.

2.球面面積膨脹為原來的兩倍,其體積變?yōu)樵瓉淼腳_____________________倍.

3.正方體的全面積為 ,一個(gè)球內(nèi)切于該正方體,那么球的體積是________ .


4.一個(gè)正方體的頂點(diǎn)都在球面上,它的棱長為 ,則這個(gè)球的表面積為_______ .

5.已知: 是棱長為 的正方體, , 分別為棱 與 的中
點(diǎn),求四棱錐 的體積.


二 提高題
6.一個(gè)長、寬、高分別為 、 、 的水槽中有水 .現(xiàn)放入
一個(gè)直徑為 的木球,如果木球的三分之二在水中,三分之一在水上,那么水是
否會(huì)從水槽中流出?

三 能力題
7.設(shè) , , , 分別為四面體 中 , , , 的中點(diǎn).
求證:四面體被平面 分成等積的兩部分.

本文來自:逍遙右腦記憶 http://www.portlandfoamroofing.com/gaoyi/77156.html

相關(guān)閱讀: