:數(shù)學(xué)歸納法的應(yīng)用 數(shù)學(xué)歸納法是證明與自然數(shù)有關(guān)的命題的一種方法,應(yīng)用廣泛.在最近幾年的高考試卷中體現(xiàn)的特別明顯,以下通過幾道高考試題來談一談數(shù)學(xué)歸納法的應(yīng)用。 一、用數(shù)學(xué)歸納法證明整除問題 用數(shù)學(xué)歸納法證明整除問題時,由到時,首先要從要證的式子中拼湊出假設(shè)成立的式子,然后證明剩余的式子也能被某式(數(shù))整除,這是數(shù)學(xué)歸納法證明問題的一大技巧。 例1、是否存在正整數(shù)m,使得f(n)=(2n+7)•3n+9對任意自然數(shù)n都能被m整除?若存在,求出最大的m值,并證明你的結(jié)論;若不存在,請說明理由. 證明:解:由f(n)=(2n+7)•3n+9,得f(1)=36, f(2)=3×36, f(3)=10×36, f(4)=34×36,由此猜想m=36. 下面用數(shù)學(xué)歸納法證明: 。1)當n=1時,顯然成立. (2)假設(shè)n=k時, f(k)能被36整除,即f(k)=(2k+7)•3k+9能被36整除;當n=k+1時,[2(k+1)+7]•3k+1+9=3[(2k+7)•3k+9]+18(3k--1-1), 由于3k-1-1是2的倍數(shù),故18(3k-1-1)能被36整除.這就是說,當n=k+1時,f(n)也能被36整除. 由(1)(2)可知對一切正整數(shù)n都有f(n)=(2n+7)•3n+9能被36整除,m的最大值為36. 二、用數(shù)學(xué)歸納法證明恒等式問題 對于證明恒等的問題,在由證等式也成立時,應(yīng)及時把結(jié)論和推導(dǎo)過程對比,也就是我們通常所說的兩邊湊的方法,以減小計算的復(fù)雜程度,從而發(fā)現(xiàn)所要證明的式子,使問題的證明有目的性.
右腦記憶論壇 | 快速記憶法 | 記憶力培訓(xùn) | 速讀培訓(xùn) | 速讀軟件 | 右腦培訓(xùn) | 站內(nèi)搜索 | 網(wǎng)站地圖
Copyright(C) 2006-2014 逍遙右腦 All Rights Reserved