【—換元法知識(shí)應(yīng)用】換元法是二元一次方程的另一種方法,就是說把一個(gè)方程用其他未知數(shù)表示,再帶入另一個(gè)方程中。
換元法
如:
x+y=590
y+20=90%x
代入后就是:
x+90%x-20=590
例2:(x+5)+(y-4)=8
(x+5)-(y-4)=4
令x+5=m,y-4=n
原方程可寫為
m+n=8
m-n=4
解得m=6,n=2
所以x+5=6,y-4=2
所以x=1,y=6
特點(diǎn):兩方程中都含有相同的代數(shù)式,如題中的x+5,y-4之類,換元后可簡(jiǎn)化方程也是主要原因。
換元法可以簡(jiǎn)化方程,這是它最突出的特點(diǎn)。
右腦記憶論壇 | 快速記憶法 | 記憶力培訓(xùn) | 速讀培訓(xùn) | 速讀軟件 | 右腦培訓(xùn) | 站內(nèi)搜索 | 網(wǎng)站地圖
Copyright(C) 2006-2016 逍遙右腦 All Rights Reserved