數(shù)學(xué)理科試題時(shí)間:120分鐘 主命題教師:宜城一中 分值:150分 副命題教師:襄州一中 ★?荚図樌第Ⅰ卷一、選擇題:本大題共12個(gè)小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、命題“ ”的否定是( )A、 B、 C、 D、 2、若兩個(gè)不同平面 、 的法向量分別為 ,則( )A、 、 相交但不垂直 B、 ⊥ C、 ∥ D、以上均不正確3、雙曲線 的右焦點(diǎn)坐標(biāo)為 ,則該雙曲線的漸近線方程為( ) A、 B、 C、 D、 4、已知向量 分別是直線 和平面 的方向向量和法向量,若 與 夾角的余弦等于 ,則 與 所成的角為( )A、 B、 C、 D、 5、下列命題中正確的是( )A、“ ”是“ ”的必要不充分條件B、“P且Q”為假,則P假且 Q假C、命題“ 恒成立”是真命題,則實(shí)數(shù) 的取值范圍是 D、命題“若 ,則 ”的否命題為“若 ,則 ”6、已知橢圓 以及橢圓內(nèi)一點(diǎn) ,則以P為中點(diǎn)的弦所在直線斜率為( )A、 B、 C、 D、7、已知空間四邊形OABC,其對(duì)角線為OB、AC,M、N分別是OA、CB的中點(diǎn),點(diǎn)G在線段MN上,且使MG=3GN,用向量 表示向量 ,則( )A、 B、 C、 D、 8、過橢圓的右焦點(diǎn) 作橢圓長(zhǎng)軸的垂線交橢圓于 兩點(diǎn), 為橢圓的左焦點(diǎn), 若 為正三角形,則橢圓的離心率為( ) A、 B、 C、 D、 9、 分別是雙曲線 的左、右焦點(diǎn),過 的直線 與雙曲線的左右 兩支分別交于A,B兩點(diǎn),若 是等邊三角形, 則該雙曲線的虛軸長(zhǎng)為( )A、 B、 C、 D、10、在三棱柱 中,底面為正三角形,側(cè)棱垂直底面, 。若 分別是棱 上的點(diǎn),且 ,則異面直線 與 所成角的余弦值為( )A、 B、 C、 D、 11、已知拋物線 的焦點(diǎn)是F,過點(diǎn)F的直線與拋物線C相交于P、Q兩點(diǎn),且點(diǎn)Q在第一象限,若 ,則直線PQ的斜率是( )A、 B、1 C、 D、 12、已知橢圓 的左、右焦點(diǎn)分別為 ,直線 過點(diǎn) 且垂直于橢圓的長(zhǎng)軸,動(dòng)直線 垂直于直線 于點(diǎn) ,線段 的垂直平分線與 的交點(diǎn)的軌跡為曲線 ,若點(diǎn) 是 上任意的一點(diǎn),定點(diǎn) , ,則 的最小值為( )A、 6 B、 C、 4 D、 5
第Ⅱ卷二、填空題(本大題共4小題,每小題5分,共20分,把答案填在答題紙上)13、拋物線 的焦點(diǎn)坐標(biāo)為 。14、已知集合 , ,若 是 的必要不充分條件,則實(shí)數(shù) 的取值范圍是 。15、在平行六面體 中, , , , 60°,則 的長(zhǎng)為 。16、已知直線 與拋物線 交于 兩點(diǎn), 為坐標(biāo)原點(diǎn),且 , 于點(diǎn) ,點(diǎn) 的坐標(biāo)為 ,則 。三、解答題(本大 題共6小題,共70分,解答應(yīng)寫出文字說明、演算步驟或證明過程)17、(本小題滿分10分)命題 :方程 表示焦點(diǎn)在 軸上的雙曲線。命題 :直線 與拋物線 有公共點(diǎn)。若“ ”為真,求實(shí)數(shù) 的取值范圍。
18、(本小題滿分12分)已知中心在原點(diǎn),焦點(diǎn)在 軸上的橢圓的一個(gè)頂點(diǎn)坐標(biāo)為 ,其離心率為 求橢圓的標(biāo)準(zhǔn)方程; 橢圓上一點(diǎn)P滿足 ,其中 為橢圓的左右焦點(diǎn), 求 的面積。 19、(本小題滿分12分)如圖,在棱長(zhǎng)為2的正方體 中 , 分別是棱 上的動(dòng)點(diǎn)。 (1)當(dāng) 時(shí),求證 ⊥ ; (2)若 分別為 的中點(diǎn),求直線 與 平面 所成角的正弦值。
20、(本小題滿分12分)在圓 上任取一點(diǎn) ,過點(diǎn) 作 軸的垂線段 , 為垂足,當(dāng) 為圓與 軸交點(diǎn)時(shí), 與 重合,動(dòng)點(diǎn) 滿足 ;(1)求點(diǎn) 的軌跡 的方程;(2)拋物線 的頂點(diǎn)在坐標(biāo)
標(biāo)原點(diǎn),并以曲線 在 軸正半軸上的頂點(diǎn)為焦點(diǎn),直線 與拋物線 交于 、 兩點(diǎn),求線段 的長(zhǎng)。 21、(本小題滿分12分)在四棱錐 中, 底面 ,底面 是直角梯形, , ∥ , , 是 的中點(diǎn)。(1)求證:平面 平面 ; (2)若 ,求二面角 的余弦值。 22、(本小題滿分12分)動(dòng)點(diǎn)P 滿足 (1)求動(dòng)點(diǎn)P的軌跡 的方程;(2)設(shè)直線 與曲線 交于 兩點(diǎn),坐標(biāo)原點(diǎn) 到直線 的距離為 ,求 面 積的最大值。 2019—2019學(xué)年下學(xué)期高二期中考試數(shù)學(xué)參考答案一、選擇題 1-6 CBABCB 7-12 DBABDD二、填.1空題 13、 14、 15、 16、 三、解答題17、解: 真,則, ,得 ………………………2分 真,則方程組 有解,消去 得 ,即 得 ………………………………4分 “ ”為真,則 真或 真,所以 ………………………………6分 或 ………………………………8分 即 ………………………………10分18、(1)設(shè)橢圓的標(biāo)準(zhǔn)方程為 , 橢圓的一個(gè)頂點(diǎn)為(0,1)則 =1, ……………2分 解得 ……………4分 橢圓的標(biāo)準(zhǔn)方程為 …………………6分 (2)設(shè) = ……………8分 得 , ………………10分 ………………12分19、(1)證明:以 為 軸, 為 軸, 為 軸建立空間直角坐標(biāo)系,如圖所示 設(shè) ∵ ∴ …………2分 又 ∴ …………………………3分 ∵ …………………………4分 ∴ ∴ …………………………5分 (2) , …………………………6分設(shè)平面 的法向量為 ,則 取 ,則 , , …………………………8分又 …………………………9分 設(shè) 與平面 所成的角為 ,則 ………………………11分即直線 與平面 所成角的正弦值為 ………………………12分20、解(1)設(shè) ,由 軸于點(diǎn) ,可設(shè) …………1分由 得 即 ……………………………………3分 動(dòng)點(diǎn) 在圓 上 ……………………………………4分 ,即 ……………………………………5分 動(dòng)點(diǎn) 的軌跡 的方程為 ………………………………6分(2)曲線 在 軸正半軸上的 頂點(diǎn) 為 ,由已 知可設(shè)拋物線方程為 焦點(diǎn)坐標(biāo)為 , 即 拋物線 的方程為 ………………………………………8分直線 與拋物線 交于 兩點(diǎn), 方程聯(lián)立: …………9分 直線 經(jīng)過拋物線焦點(diǎn) ……………………12分21、解:(1) …………1分作 與點(diǎn) ,則 ………………2分 …………………3分 平面 …………4分 且 平面 , 平面 平面 …………………………5分 平面 平面 平面 ………………6分 (2)由(1)可以 為 軸, 為 軸, 為 軸,建立空間直角坐標(biāo)系,如圖 是 中點(diǎn) 設(shè)平面 的法向量為 則 取 ,則 …………8分由(1)知平面 的法向量為 …………………………9分 ………………………………11分 二面角 的余弦值為
………………………………12分另 解:可證 為二面角 的平面角,求出 便可22、解:(1)由已知得,點(diǎn)P到點(diǎn) 與 的距離之和等于 且 ,所以動(dòng)點(diǎn)P的軌跡是以 為焦點(diǎn)的橢圓 ……………2分 設(shè)橢圓的標(biāo)準(zhǔn)方程為 則 即 動(dòng)點(diǎn)P的軌跡C的方程為 …………………4分(2)設(shè)直線 的方程為 ,原點(diǎn) 到直線 的距離為 ,即 化簡(jiǎn)得 ,即 …………………………5分將直線 與橢圓C方程聯(lián)立得 化簡(jiǎn)得
右腦記憶論壇 | 快速記憶法 | 記憶力培訓(xùn) | 速讀培訓(xùn) | 速讀軟件 | 右腦培訓(xùn) | 站內(nèi)搜索 | 網(wǎng)站地圖
Copyright(C) 逍遙右腦 All Rights Reserved