高一數(shù)學(xué)必修1第二章測試題一、:(本題共12小題,每小題5分,共60分,)1、若 能構(gòu) 成映射,下列說法正確的有 ( )(1)A中的任一元素在B中必須有像且唯一;(2)B中的多個元素可以在A中有相同的原像;(3)B中的元素可以在A中無原像;(4)像的集合就是集合B。A、1個 B、2個 C、3個 D、4個
2、對于函數(shù) ,以下說法正確的有 ( )① 是 的函數(shù);②對于不同的 的值也不同;③ 表示當(dāng) 時函數(shù) 的值,是一個常量;④ 一定可以用一個具體的式子表示出來。A、1個 B、2個 C、3個 D、4個3、設(shè)函數(shù) 是 上的減函數(shù),則有 ( )A、 B、 C、 D、
4、下列各組函數(shù)是同一函數(shù)的是 ( )① 與 ;② 與 ;③ 與 ;④ 與 。A、①② B、①③ C、②④ D、①④5、二次函數(shù) 的對稱軸為 ,則當(dāng) 時, 的值為 ( )A、 B、1 C、17 D、256、函數(shù) 的值域為 ( )A、 B、 C、 D、 7、下列四個圖像中,是函數(shù)圖像的是 ( )
A、(1) B、(1)、(3) 、(4) C、(1)、(2)、(3) D、(3)、(4)8、若 ,則 ( )A、2 B、4 C、 D、109 是定義在R上的奇函數(shù),下列結(jié)論中,不正確的是( )A、 B、 C D、 10果函數(shù) 在區(qū)間 上是減函數(shù),那么實數(shù) 的取值范圍是( )A、 B、 C、 D、 11、定義在 上的函數(shù) 對任意兩個不相等實數(shù) ,總有 成立,則必有( )A、函數(shù) 是 先增加后減少 B、函數(shù) 是先減少后增加C、 在 上是增函數(shù) D、 在 上是減函數(shù)12、下列所給4個圖象中,與所給3件事吻合最好的順序為 ( )(1)我離開家不久,發(fā)現(xiàn)自己把作業(yè)本忘在家里了,于是立刻 返回家里取了作業(yè)本再上學(xué);(2)我騎著車一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時間; (3)我出發(fā)后,心情輕松,緩緩行進,后來為了趕時間開始加速。A、(1)(2)(4) B、(4)(2)(3) C、(4)(1)(3) D、(4)(1)(2)二、題:(共4小題,每小題4分,共16分,請把答案填寫在答題紙上)13、已知 ,則 。14.若函數(shù)f(x)= -ax-b的兩個零點是2和3,則函數(shù)g(x)=b -ax-1的零點 。15、定義在 上的奇函數(shù) ,則常數(shù) ____, _____16、設(shè) ,若 ,則 。
高中數(shù)學(xué)第二章測試題答題卷班級 姓名 學(xué)號 成績 一、答題處:題號123456789101112答案 二、題答題處:13、 14、 15、 16、 三、解答題:(本題共5小題,共74分,解答應(yīng)寫出文字說明,證明過程或演算步驟.)17. (本題12分)設(shè)全集U={不超過5的正整數(shù)},A={xx2-5x+q=0},B={xx2+px+12=0},(CUA)∪B={1,3,4,5},求p、q和集合A 、B.
1 8.(本題12分)定義在[-1,1]上的奇函數(shù)f(x)是減函數(shù),且f(1-a)+f (1-a2)>0,求實數(shù)a的取 值范圍。
19. (本題12分)已知f(x)是定義在( 0,+∞)上的增函數(shù),且滿足f(xy)=f(x)+f(y),f(2)=1.(1)求證:f(8)=3 (2)求不等式f(x)-f(x-2)>3的解集.
20. (本題12分)某租賃公司擁有汽車100輛,當(dāng)每輛車的月租金為3000元時,可全部租出,當(dāng)每輛車的月租金每增加50元時,未租出的車將會增加一輛,租出的車每輛每月需維護費150元,未租出的車每輛每月需要維護費50元.(1)當(dāng)每輛車的月租金定為3600元時,能租出多少輛車?(2)當(dāng)每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少? 22(本題14分)、已知函數(shù) 若函數(shù) 的最小值是 , 且對稱軸是 , 求 的值:(2)在(1)條件下求 在區(qū)間 的最小值
一、選擇題:CBBCD ABADA CD二、填空題:13、24 14、 15、15、0;0 16、 17、解:P=-7,q=6,A={2,3},B={3,4} 18、解:f(1-a)+f(1-a2)>0,得:f(1-a) >f(a2-1), 1<a≤ 19、(1)【證明】 由題意得f(8)=f(4×2)=f(4)+f(2)=f(2×2)+f(2)=f(2)+f(2)+f(2)=3f(2)又∵f(2)=1 ∴f(8)=3(2)【解】 不等式化為f(x)>f(x-2)+3∵f(8)=3 ∴f(x)>f(x-2)+f(8)=f(8x-16)∵f(x)是(0,+∞)上的增函數(shù)∴ 解得2<x<167 20、【解】 (1)當(dāng)每輛車月租金為3600元時,未租出的車輛數(shù)為 3600-300050 =12,所以這時租出了88輛.(2)設(shè)每輛車的月租金定為x元,則公司月收益為f(x)=(100-x-300050 )(x-150)-x-300050 ×50整理得:f(x)=-x250 +162x-2100=-150 (x-4050)2+307050∴當(dāng)x=4050時,f(x)最大,最大值為f(4050)=307050 元22.(15分)(1) (2)當(dāng) 時,即 時 在區(qū)間 上單調(diào)遞減當(dāng) 時,即 時 在區(qū)間 上單調(diào)遞減, 在區(qū)間 上單調(diào)遞增 當(dāng) 時, 在區(qū)間 上單調(diào)遞增, 22.(15分)(1) (2)當(dāng) 時,即 時 在區(qū)間 上單調(diào)遞減當(dāng) 時,即 時 在區(qū)間 上單調(diào) 遞減, 在區(qū)間 上單調(diào)遞增 當(dāng) 時, 在區(qū)間 上單調(diào)遞增,
右腦記憶論壇 | 快速記憶法 | 記憶力培訓(xùn) | 速讀培訓(xùn) | 速讀軟件 | 右腦培訓(xùn) | 站內(nèi)搜索 | 網(wǎng)站地圖
Copyright(C) 2006-2016 逍遙右腦 All Rights Reserved