【—梯形公式應用】梯形定理:一組對邊平行且不相等的四邊形是梯形。
梯形公式應用
例1、如圖,△ABC中,AB=AC,BD、CE分別為∠ABC、∠ACB的平分線。求證:四邊形EBCD是等腰梯形。
分析:欲證四邊形EBCD是等腰梯形,解題思路是證ED//BC,BE=CD,由已知條件易證△BCD≌△CBE得到EB=DC,從而AE=AD,運用等腰三角形的性質可證ED//BC。
證明:∵AB=AC,
∴∠ABC=∠ACB,
∴∠DBC=∠ECB=1/2∠ABC,
∴△EBC≌△DCB(A.S.A),
∴BE=CD,
∴AB-BE=AC-CD,即AE=AD.
∴∠ABC=∠AED,∴ED//BC,
又∵EB與DC交于點A,即EB與DC不平行,
∴四邊形EBCD是梯形,又BE=DC,
∴四邊形EBCD是等腰梯形.
點評:本題的解題關鍵是證明ED//BC,EB=DC,易錯點是忽視證明EB與DC不平行.
知識延伸:一組對邊平行,另一組對邊不平行的四邊形是梯形。
右腦記憶論壇 | 快速記憶法 | 記憶力培訓 | 速讀培訓 | 速讀軟件 | 右腦培訓 | 站內搜索 | 網(wǎng)站地圖
Copyright(C) 2006-2014 逍遙右腦 All Rights Reserved