初探初中學(xué)生數(shù)學(xué)解題誤區(qū)

編輯: 逍遙路 關(guān)鍵詞: 初中數(shù)學(xué) 來源: 高中學(xué)習網(wǎng)


    在學(xué)習過程中,錯誤的出現(xiàn)是不可避免的。因此,對錯誤進行系統(tǒng)的分析是非常重要的:首先教師可以通過錯誤來發(fā)現(xiàn)學(xué)生的不足,從而采取相應(yīng)的補救措施;其次,錯誤從一個特定的角度揭示了學(xué)生掌握知識的過程;最后,錯誤對于學(xué)生來說也是不可或缺的,是學(xué)生在學(xué)習過程中對所學(xué)知識不斷嘗試的結(jié)果。本文就初中學(xué)生數(shù)學(xué)解題錯誤作一簡要分析。
  
  一、對待初中學(xué)生解題錯誤的態(tài)度
  
  在初中數(shù)學(xué)教學(xué)中,教師害怕學(xué)生出現(xiàn)解題錯誤,對錯誤采取嚴厲禁止的態(tài)度是司空見慣的。在這種懼怕心理支配下,教師只注重教給學(xué)生正確的結(jié)論,而不注重揭示知識形成的過程,害怕啟發(fā)學(xué)生進行討論會得出錯誤的結(jié)論。長此以往,學(xué)生只接受了正確的知識,但對錯誤的出現(xiàn)缺乏心理準備,看不出錯誤或看出錯誤但改不對。持這種態(tài)度的教師只關(guān)心學(xué)生用對知識而忽視學(xué)生會用知識。例如,在講有理數(shù)運算時,由于只注重得出正確的結(jié)果,強調(diào)運算法則、運算順序,而對運用運算律簡化運算注意不夠,但后者對發(fā)展學(xué)生運算能力卻更為重要?傊,這種對待錯誤的態(tài)度會對教學(xué)帶來一些消極的影響。
  
  事實上,錯誤是正確的先導(dǎo),成功的開始。學(xué)生所犯錯誤及其對錯誤的認識,是學(xué)生知識寶庫的重要組成部分。筆者至今仍然對學(xué)生時代的一節(jié)數(shù)學(xué)課記憶猶新。
  
  當時老師講過a\+2-b\+2=(a+b)(a-b)后,讓我們自己分解x\+4-y\+4。很快大家就做完了。老師一邊巡視一邊督促檢查。但在最后教師宣布只有1人做對時,我們都感到非常吃驚。我們把x\+4-y\+4分解為(x\+2+y\+2)(x\+2-y\+2)錯在哪里呢?做對同學(xué)的答案是(x\+2+y\+2)(x+y)(x-y),兩相對照,我們發(fā)現(xiàn)原來x\+2-y\+2還可以繼續(xù)分解。于是,分解因式要進行到每個因式都不能再分解為止給每個同學(xué)都留下了深刻的印象。由此也可以看出,利用學(xué)生典型錯誤并進行正確誘導(dǎo)會收到良好的教學(xué)效果。
首頁上一頁1234下一頁末頁共4頁
本文來自:逍遙右腦記憶 http://www.portlandfoamroofing.com/chuzhong/252899.html

相關(guān)閱讀:初中數(shù)學(xué)矩形的公式應(yīng)用