2012-2013學(xué)年遼寧省朝陽市建平縣九年級(上)期末數(shù)學(xué)試卷參考答案與試題解析 一、精心選一選(本大題共8小題,每小題3分,共24分)1.(3分)下面四幅圖是兩個物體不同時刻在太陽光下的影子,按照時間的先后順序正確的是( 。 A.A⇒B⇒C⇒DB.D⇒B⇒C⇒AC.C⇒D⇒A⇒BD.A⇒C⇒B⇒D
考點:平行投影.分析:解:根據(jù)平行投影的特點和規(guī)律可知,C,D是上午,A,B是下午,根據(jù)影子的長度可知先后為C→D→A→B.解答:解:根據(jù)平行投影的特點和規(guī)律可知,C,D是上午,A,B是下午,根據(jù)影子的長度可知先后為C→D→A→B.故選C.點評:本題考查平行投影的特點和規(guī)律.在不同時刻,同一物體的影子的方向和大小可能不同,不同時刻物體在太陽光下的影子的大小在變,方向也在改變,就北半球而言,從早晨到傍晚物體的指向是:西?西北?北?東北?東,影長由長變短,再變長. 2.(3分)已知直角三角形的兩邊長是方程x2?7x+12=0的兩根,則第三邊長為( ) A.7B.5C. D.5或
考點:勾股定理;解一元二次方程-因式分解法.專題:分類討論.分析:求出方程的解,得出直角三角形的兩邊長,分為兩種情況:①當(dāng)3和4是兩直角邊時,②當(dāng)4是斜邊,3是直角邊時,根據(jù)勾股定理求出第三邊即可.解答:解:x2?7x+12=0,(x?3)(x?4)=0,x?3=0,x?4=0,解得:x1=3,x2=4,即直角三角形的兩邊是3和4,當(dāng)3和4是兩直角邊時,第三邊是 =5;當(dāng)4是斜邊,3是直角邊時,第三邊是 = ,即第三邊是5或 ,故選D.點評:本題考查了解一元二次方程和勾股定理,注意:解此題時要進(jìn)行分類討論. 3.(3分)已知x=3是關(guān)于x的方程 x2?2a+1=0的一個解,則2a的值是( 。 A.11B.?6.5C.13D.?13
考點:一元二次方程的解.專題:.分析:一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數(shù)的值;即用這個數(shù)代替未知數(shù)所得式子仍然成立;將x=3代入原方程即可求得2a的值.解答:解:把x=3代入原方程得: ×9?2a+1=0,∴2a=13;故選C.點評:本題考查的是一元二次方程的根即方程的解的定義. 4.(3分)下列命題中錯誤的( 。 A.一對鄰角互補(bǔ)的四邊形是平行四邊形 B.一組對邊平行,一組對角相等的四邊形是平行四邊形 C.等腰梯形的對角線相等 D.平行四邊形的對角線互相平分
考點:命題與定理.分析:利用梯形可對A進(jìn)行判斷;根據(jù)平行四邊形的判定方法對B進(jìn)行判斷;根據(jù)等腰梯形的性質(zhì)對C進(jìn)行判斷;根據(jù)平行四邊形的性質(zhì)對D進(jìn)行判斷.解答:解:A、直角梯形的一對鄰角互補(bǔ),所以A選項的命題為假命題;B、一組對邊平行,一組對角相等的四邊形是平行四邊形,所以B選項為真命題;C、等腰梯形的對角線相等,所以C選項為真命題;D、平行四邊形的對角線互相平分,所以D選項為真命題.故選A.點評:本題考查了命題與定理:判斷事物的語句叫命題;正確的命題稱為真命題,錯誤的命題稱為假命題;經(jīng)過推理論證的真命題稱為定理. 5.(3分)(2007•洞頭縣二模)如圖,在直角坐標(biāo)系中,直線y=6?x與函數(shù) (x>0)的圖象相交于點A、B,設(shè)A點的坐標(biāo)為(x1,y1),那么長為x1,寬為y1的矩形面積和周長分別是( 。 A.4,12B.4,6C.8,12D.8,6
考點:反比例函數(shù)與一次函數(shù)的交點問題.專題:探究型.分析:先根據(jù)兩函數(shù)圖象的交點在第一象限可知x>0,y>0,再根據(jù)兩函數(shù)有交點可列出關(guān)于x、y的方程組,求出x,y的值,再根據(jù)矩形的面積及周長公式進(jìn)行解答即可.解答:解:∵兩函數(shù)圖象的交點在第一象限,∴x>0,y>0,∴ ,∴ =6?x,∴x2?6x+4=0,解得x=3± ,∵A在B的左邊,∴x=3? ,y=3+ ,即A(3? ,3+ ),∴矩形的面積=(3? )(3+ )=4;矩形的周長=2(3? )+2(3+ )=12.故選A.點評:本題考查的是一次函數(shù)與反比例函數(shù)的交點問題,根據(jù)題意得出關(guān)于x、y的方程組是解答此題的關(guān)鍵. 6.(3分)如果點A(?1,y1)、B(1,y2)、C( ,y3)是反比例函數(shù) 圖象上的三個點,則下列結(jié)論正確的是( ) A.y1>y2>y3B.y3>y2>y1C.y2>y1>y3D.y3>y1>y2
考點:反比例函數(shù)圖象上點的坐標(biāo)特征.分析:根據(jù)反比例函數(shù)的比例系數(shù)的符號可得反比例函數(shù)所在象限為二、四,其中在第四象限的點的縱坐標(biāo)總小于在第二象限的縱坐標(biāo),進(jìn)而判斷在同一象限內(nèi)的點B和點C的縱坐標(biāo)的大小即可.解答:解:∵反比例函數(shù)的比例系數(shù)為?1,∴圖象的兩個分支在二、四象限;∵第四象限的點的縱坐標(biāo)總小于在第二象限的縱坐標(biāo),點A在第二象限,點B、C在第四象限,∴y1最大,∵1> ,y隨x的增大而增大,∴y2>y3,∴y1>y2>y3.故選A.點評:考查反比例函數(shù)圖象上點的坐標(biāo)特征;用到的知識點為:反比例函數(shù)的比例系數(shù)小于0,圖象的2個分支在二、四象限;第四象限的點的縱坐標(biāo)總小于在第二象限的縱坐標(biāo);在同一象限內(nèi),y隨x的增大而增大. 7.(3分)在聯(lián)歡晚會上,有A、B、C三名同學(xué)站在一個三角形的三個頂點位置上,他們在玩搶凳子游戲,要求在他們中間放一個木凳,誰先搶到凳子誰獲勝,為使游戲公平,則凳子應(yīng)放的最適當(dāng)?shù)奈恢迷凇鰽BC的( 。 A.三邊中線的交點B.三條角平分線的交點 C.三邊上高的交點D.三邊中垂線的交點
考點:線段垂直平分線的性質(zhì).專題:.分析:為使游戲公平,要使凳子到三個人的距離相等,于是利用線段垂直平分線上的點到線段兩端的距離相等可知,要放在三邊中垂線的交點上.解答:解:利用線段垂直平分線的性質(zhì)得:要放在三邊中垂線的交點上.故選D.點評:本題主要考查了線段垂直平分線的性質(zhì)的應(yīng)用;利用所學(xué)的數(shù)學(xué)知識解決實際問題是一種能力,要注意培養(yǎng).想到要使凳子到三個人的距離相等是正確解答本題的關(guān)鍵. 8.(3分)(2009•荊州)如圖,將邊長為8cm的正方形ABCD折疊,使點D落在BC邊的中點E處,點A落在F處,折痕為MN,則線段CN長是( 。 A.3cmB.4cmC.5cmD.6cm
考點:勾股定理;翻折變換(折疊問題).專題:壓軸題.分析:根據(jù)折疊的性質(zhì),只要求出DN就可以求出NE,在直角△CEN中,若設(shè)CN=x,則DN=NE=8?x,CE=4cm,根據(jù)勾股定理就可以列出方程,從而解出CN的長.解答:解:設(shè)CN=xcm,則DN=(8?x)cm,由折疊的性質(zhì)知EN=DN=(8?x)cm,而EC= BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8?x)2=16+x2,整理得16x=48,所以x=3.故選A.點評:折疊問題其實質(zhì)是軸對稱,對應(yīng)線段相等,對應(yīng)角相等,通常用勾股定理解決折疊問題. 二、認(rèn)真填一填:(本大題共8小題,每小題3分,共24分.)9.(3分)已知 是關(guān)于x的方程:x2?6x+a=0的一個解,則2a?1的值是 13。
考點:一元二次方程的解.分析:把x= 代入關(guān)于x的方程x2?6x+a=0,列出關(guān)于a的方程,通過解該方程來求得a的值,然后把a(bǔ)的值代入所求的代數(shù)式并求值即可.解答:解:由題意,得(3? )2?6(3? )+a=0,即?7+a=0,解得a=7,則2a?1=2×7?1=13.故答案是:13.點評:本題主要考查了方程的解的定義.方程的根即方程的解,就是能使方程左右兩邊相等的未知數(shù)的值. 10.(3分)在一個有40萬人口的縣,隨機(jī)調(diào)查了3000人,其中有2130人看中央電視臺的《焦點訪談》,在該縣隨便問一個人,他看《焦點訪談》的概率大約是 。
考點:概率公式.專題:.分析:根據(jù)隨機(jī)事件概率大小的求法,找準(zhǔn)兩點:①符合條件的情況數(shù)目;②全部情況的總數(shù).二者的比值就是其發(fā)生的概率的大。解答:解:由題意知:3000人中有2130人看中央電視臺的《焦點訪談》,∴在該縣隨便問一個人,他看《焦點訪談》的概率大約是 = .故答案為: .點評:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)= . 11.(3分)菱形有一個內(nèi)角為60°,較短的對角線長為6,則它的面積為 18 。
考點:菱形的性質(zhì).分析:根據(jù)菱形對角線垂直且互相平分,且每條對角線平分它們的夾角,即可得出菱形的另一一條對角線長,再利用菱形的面積公式求出即可.解答:解:如圖所示:∵菱形有一個內(nèi)角為60°,較短的對角線長為6,∴設(shè)∠BAD=60°,BD=6,∵四邊形ABCD是菱形,∴∠BAC=∠DAC=30°,DO=BO=3,∴AO= =3 ,∴AC=6 ,則它的面積為: ×6×6 =18 .故答案為:18 .點評:此題主要考查了菱形的性質(zhì),熟練掌握菱形的面積公式以及對角線之間的關(guān)系是解題關(guān)鍵. 12.(3分)(2012•臨邑縣一模)依次連接菱形各邊中點所得到的四邊形是 矩形 .
考點:矩形的判定;平行線的性質(zhì);三角形中位線定理;平行四邊形的判定;菱形的性質(zhì).專題:證明題.分析:連接AC、BD交于O,根據(jù)三角形的中位線定理推出EF∥BD∥HG,EH∥AC∥FG,得出四邊形EFGH是平行四邊形,根據(jù)菱形性質(zhì)推出AC⊥BD,推出EF⊥EH,即可得出答案.解答:解: 連接AC、BD交于O,∵E、F、G、H分別是AB、AD、CD、BC的中點,∴EF∥BD,F(xiàn)G∥AC,HG∥BD,EH∥AC,∴EF∥HG,EH∥FG,∴四邊形EFGH是平行四邊形,∵四邊形ABCD是菱形,∴AC⊥BD,∵EF∥BD,EH∥AC,∴EF⊥EH,∴∠FEH=90°,∴平行四邊形EFGH是矩形,故答案為:矩形.點評:本題考查了矩形的判定,菱形的性質(zhì),平行四邊形的判定,平行線性質(zhì)等知識點的運(yùn)用,主要考查學(xué)生能否正確運(yùn)用性質(zhì)進(jìn)行推理,題目比較典型,難度適中. 13.(3分)如圖,是一個幾何體的三視圖,那么這個幾何體是 空心的圓柱。
考點:由三視圖判斷幾何體.分析:兩個視圖是矩形,一個視圖是個圓環(huán),那么符合這樣條件的幾何體是空心圓柱.解答:解:如圖,該幾何體的三視圖中兩個視圖是矩形,一個視圖是個圓環(huán),故該幾何體為空心圓柱.點評:本題考查由三視圖確定幾何體的形狀,主要考查學(xué)生空間想象能力及對立體圖形的認(rèn)知能力. 14.(3分)用配方法將二次三項式x2+4x?96變形,結(jié)果為。▁+2)2?100 .
考點:配方法的應(yīng)用.專題:計算題.分析:前兩項加上4再減去4變形,利用完全平方公式化簡即可得到結(jié)果.解答:解:x2+4x?96=x2+4x+4?100=(x+2)2?100.故答案為:(x+2)2?100點評:此題考查了配方法的應(yīng)用,熟練掌握完全平方公式是解本題的關(guān)鍵. 15.(3分)(2009•安順)如圖,若將四根木條釘成的矩形木框變成平行四邊形ABCD的形狀,并使其面積為矩形面積的一半,則這個平行四邊形的最小內(nèi)角等于 30 度.
考點:平行四邊形的性質(zhì).專題:計算題;壓軸題.分析:要使其面積為矩形面積的一半,平行四邊形ABCD的高必須是矩形寬的一半,根據(jù)直角三角形中30°的角對的直角邊等于斜邊的一半可知,這個平行四邊形的最小內(nèi)角等于30度.解答: 解:∵平行四邊形的面積為矩形的一半且同底BC,∴平行四邊形ABCD的高AE是矩形寬AB的一半.在直角三角形ABE中,AE= AB,∴∠ADC=30°.故答案為30.點評:主要考查了平行四邊形的面積公式和基本性質(zhì).平行四邊形的面積等于底乘高. 16.(3分)如圖,一個正方形擺放在桌面上,則正方形的邊長為 .
考點:正方形的性質(zhì);全等三角形的判定與性質(zhì);勾股定理.分析:標(biāo)注字母,根據(jù)正方形的性質(zhì)可得AB=AD,∠BAD=90°,再根據(jù)同角的余角相等求出∠1=∠3,然后利用“角角邊”字母△ABE和△DAF全等,根據(jù)全等三角形對應(yīng)邊相等可得AE=DF,再利用勾股定理列式計算即可得解.解答:解:如圖,由正方形可得,AB=AD,∠BAD=90°,∠1+∠2=180°?90°=90°,∵BE⊥AE,∴∠2+∠3=180°?90°=90°,∴∠1=∠3,在△ABE和△DAF中,,∴△ABE≌△DAF(AAS),∴AE=DF=1,在Rt△ABE中,AB= = = ,即正方形的邊長為 .故答案為: .點評:本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理的應(yīng)用,利用三角形全等,把長度為1、2的邊轉(zhuǎn)化為一個直角三角形的兩直角邊是解題的關(guān)鍵. 三、細(xì)心做一做(17題每小題12分共12分18題8分)17.(12分)(1)解方程: (2)解方程:x2+4x?6=0.
考點:解一元二次方程-公式法;解一元二次方程-配方法.分析:(1)求出b2?4ac的值,再代入公式求出即可;(2)求出b2?4ac的值,再代入公式求出即可.解答:解:(1) ,b2?4ac=(?2 )2?4×2×1=4,x= ,x1= ,x2= .(2)x2+4x?6=0,b2?4ac=42?4×1×(?6)=40,x= ,x1=?2+ ,x2=?2? .點評:本題考查了解一元二次方程的應(yīng)用,主要考查學(xué)生的計算能力. 18.(8分)如圖,一墻墩(用線段AB表示)的影子是BC,小明(用線段DE表示)的影子是EF,在M處有一顆大樹,它的影子是MN.(1)試判斷是路燈還是太陽光,如果是路燈確定路燈的位置(用點P表示).如果是太陽光請畫出光線.(2)在圖中畫出表示大樹高的線段.(3)若小明的眼睛近似地看成是點D,試畫圖分析小明能否看見大樹.
考點:平行投影;視點、視角和盲區(qū).分析:(1)根據(jù)光線相交于一點得出確定路燈的位置;(2)利用AB,DE,確定大樹的高,(3)運(yùn)用視角連接AD,即可得出能否看見大樹.解答:解:(1)根據(jù)光線相交于一點,即可得出路燈確定路燈的位置;(2)如圖所示:(3)如圖所示,小明的眼睛近似地看成是點D,小明不能看見大樹.點評:此題主要考查了平行投影與中心投影以及視角問題,根據(jù)已知確定住P點的位置是解決問題的關(guān)鍵. 四、解答題(19題7分、20題9分)19.(7分)(2005•南通)楊華與季紅用5張同樣規(guī)格的硬紙片做拼圖游戲,正面如圖1所示,背面完全一樣,將它們背面朝上攪勻后,同時抽出兩張.規(guī)則如下:當(dāng)兩張硬紙片上的圖形可拼成電燈或小人時,楊華得1分;當(dāng)兩張硬紙片上的圖形可拼成房子或小山時,季紅得1分(如圖2).問題:游戲規(guī)則對雙方公平嗎?請說明理由;若你認(rèn)為不公平,如何修改游戲規(guī)則才能使游戲?qū)﹄p方公平?
考點:游戲公平性.分析:游戲是否公平,關(guān)鍵要看是否游戲雙方贏的機(jī)會是否相等,即判斷雙方取勝的概率是否相等,或轉(zhuǎn)化為在總情況明確的情況下,判斷雙方取勝所包含的情況數(shù)目是否相等.解答:解:(1)這個游戲?qū)﹄p方不公平.∵P(拼成電燈)= ;P(拼成小人)= ;P(拼成房子)= ;P(拼成小山)= ,∴楊華平均每次得分為 (分);季紅平均每次得分為 (分).∵ < ,∴游戲?qū)﹄p方不公平.(2)改為:當(dāng)拼成的圖形是小人時楊華得3分,其余規(guī)則不變,就能使游戲?qū)﹄p方公平.(答案不惟一,其他規(guī)則可參照給分)點評:本題考查的是游戲公平性的判斷.判斷游戲公平性就要計算每個事件的概率,概率相等就公平,否則就不公平.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比. 20.(9分)如圖,已知直線y=?x+4與反比例函數(shù) 的圖象相交于點A(?2,a),并且與x軸相交于點B.(1)求a的值;(2)求反比例函數(shù)的表達(dá)式;(3)求△AOB的面積.
考點:反比例函數(shù)綜合題.專題:待定系數(shù)法.分析:(1)把A的坐標(biāo)代入直線解析式求a;(2)把求出的A點坐標(biāo)代入反比例解析式中求k,從而得解析式;求B點坐標(biāo),結(jié)合A點坐標(biāo)求面積.解答:解:(1)將A(?2,a)代入y=?x+4中,得:a=?(?2)+4,所以a=6(2)由(1)得:A(?2,6)將A(?2,6)代入 中,得到: ,即k=?12所以反比例函數(shù)的表達(dá)式為: (3)如圖:過A點作AD⊥x軸于D;∵A(?2,6)∴AD=6在直線y=?x+4中,令y=0,得x=4∴B(4,0),即OB=4∴△AOB的面積S= OB×AD= ×4×6=12.點評:熟練掌握解析式的求法.在進(jìn)行與線段有關(guān)的計算時,注意點的坐標(biāo)與線段長度的關(guān)系. 五、(21、22題各10分)21.(10分)將一塊正方形鐵皮的四個角各剪去一個邊長為4cm的小正方形,做成一個無蓋的盒子,盒子的容積是400cm3,求原鐵皮的邊長.
考點:一元二次方程的應(yīng)用.專題:幾何圖形問題.分析:本題可設(shè)原鐵皮的邊長為xcm,將這塊正方形鐵皮四個角各剪去一個邊長為4cm的小正方形,做成一個無蓋的盒子后,盒子的底面積變?yōu)椋▁?2×4)2,其高則為4cm,根據(jù)體積公式可列出方程,然后解方程求出答案即可.解答:解:設(shè)原鐵皮的邊長為xcm,依題意列方程得(x?2×4)2×4=400,即(x?8)2=100,所以x?8=±10,x=8±10.所以x1=18,x2=?2(舍去).答:原鐵皮的邊長為18cm.點評:這類題目體現(xiàn)了數(shù)形結(jié)合的思想,通常把實際問題轉(zhuǎn)換為方程求解,但應(yīng)注意考慮解得合理性,即考慮解的取舍. 22.(10分)(2010•安順)已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點E,(1)求證:四邊形ADCE為矩形;(2)當(dāng)△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.
考點:矩形的判定;角平分線的性質(zhì);等腰三角形的性質(zhì);正方形的判定.專題:證明題;開放型.分析:(1)根據(jù)矩形的有三個角是直角的四邊形是矩形,已知CE⊥AN,AD⊥BC,所以求證∠DAE=90°,我樣可以證明四邊形ADCE為矩形.(2)根據(jù)正方形的判定,我們可以假設(shè)當(dāng)AD= BC,由已知可得,DC= BC,由(1)的結(jié)論可知四邊形ADCE為矩形,所以證得,四邊形ADCE為正方形.解答:(1)證明:在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC,∵AN是△ABC外角∠CAM的平分線,∴∠MAE=∠CAE,∴∠DAE=∠DAC+∠CAE= 180°=90°,又∵AD⊥BC,CE⊥AN,∴∠ADC=∠CEA=90°,∴四邊形ADCE為矩形.(2)當(dāng)△ABC滿足∠BAC=90°時,四邊形ADCE是一個正方形.理由:∵AB=AC,∴∠ACB=∠B=45°,∵AD⊥BC,∴∠CAD=∠ACD=45°,∴DC=AD,∵四邊形ADCE為矩形,∴矩形ADCE是正方形.∴當(dāng)∠BAC=90°時,四邊形ADCE是一個正方形.點評:本題是以開放型試題,主要考查了對矩形的判定,正方形的判定,等腰三角形的性質(zhì),及角平分線的性質(zhì)等知識點的綜合運(yùn)用. 六\(23、24題各10分)23.(10分)某花圃用花盆培育某種花苗,經(jīng)過實驗發(fā)現(xiàn)每盆的盈利與每盆的株數(shù)構(gòu)成一定的關(guān)系.每盆植入3株時,平均單株盈利3元;以同樣的栽培條件,若每盆增加1株,平均單株盈利就減少0.5元.要使每盆的盈利達(dá)到10元,每盆應(yīng)該植多少株?
考點:一元二次方程的應(yīng)用.分析:根據(jù)已知假設(shè)每盆花苗增加x株,則每盆花苗有(x+3)株,得出平均單株盈利為(3?0.5x)元,由題意得(x+3)(3?0.5x)=10求出即可.解答:解:設(shè)每盆花苗增加x株,則每盆花苗有(x+3)株,平均單株盈利為:(3?0.5x)元,由題意得:(x+3)(3?0.5x)=10.化簡,整理,的x2?3x+2=0.解這個方程,得x1=1,x2=2,則3+1=4,2+3=5,答:每盆應(yīng)植4株或者5株.點評:此題考查了一元二次方程的應(yīng)用,根據(jù)每盆花苗株數(shù)×平均單株盈利=總盈利得出方程是解題關(guān)鍵. 24.(10分)(2006•中山)如圖,在▱ABCD中,∠DAB=60°,點E、F分別在CD、AB的延長線上,且AE=AD,CF=CB.(1)求證:四邊形AFCE是平行四邊形;(2)若去掉已知條件的“∠DAB=60°”,上述的結(jié)論還成立嗎?若成立,請寫出證明過程;若不成立,請說明理由.
考點:平行四邊形的判定與性質(zhì);全等三角形的判定與性質(zhì).專題:證明題;探究型.分析:(1)由已知條件可得△AED,△CFB是正三角形,可得∠AEC=∠BFC=60°,∠EAF=∠FCE=120°,所以四邊形AFCE是平行四邊形.(2)上述結(jié)論還成立,可以證明△ADE≌△CBF,可得∠AEC=∠BFC,∠EAF=∠FCE,所以四邊形AFCE是平行四邊形.解答:(1)證明:∵四邊形ABCD是平行四邊形,∴DC∥AB,∠DCB=∠DAB=60°.∴∠ADE=∠CBF=60°.∵AE=AD,CF=CB,∴△AED,△CFB是正三角形.∴∠AEC=∠BFC=60°,∠EAF=∠FCE=120°.∴四邊形AFCE是平行四邊形.(2)解:上述結(jié)論還成立.證明:∵四邊形ABCD是平行四邊形,∴DC∥AB,∠CDA=∠CBA,∠DCB=∠DAB,AD=BC,DC=AB.∴∠ADE=∠CBF.∵AE=AD,CF=CB,∴∠AED=∠ADE,∠CFB=∠CBF.∴∠AED=∠CFB.又∵AD=BC,在△ADE和△CBF中.,∴△ADE≌△CBF(AAS).∴∠AED=∠BFC,∠EAD=∠FCB.又∵∠DAB=∠BCD,∴∠EAF=∠FCE.∴四邊形EAFC是平行四邊形.點評:本題考查了等邊三角形的性質(zhì)及平行四邊形的判定.多種知識綜合運(yùn)用是解題中經(jīng)常要遇到的. 七、(12分)25.(12分)已知反比例函數(shù) 和一次函數(shù)y=2x?1,其中一次函數(shù)的圖象經(jīng)過(a,b),(a+2,b+k)兩點.(1)求:反比例函數(shù)的解析式.(2)如圖,已知點A在第一象限,且同時在上述兩函數(shù)的圖象上.求點A的坐標(biāo).(3)利用(2)的結(jié)果,問在x軸上是否存在點P,使得△AOP為等腰三角形?若存在,把符合條件的P點坐標(biāo)直接寫出來;若不存在,說明理由.
考點:反比例函數(shù)綜合題.分析:(1)先把(a,b)、(a+2,b+k)代入y=2x+1得到 ,然后結(jié)果代數(shù)式變形可解得k=4,則可確定反比例函數(shù)解析式;(2)把一次函數(shù)與反比例函數(shù)解析式組成方程組,再解方程組可確定A點坐標(biāo);(3)先利用勾股計算出OA= ,過A點作AP1⊥x軸,則△OAP1為等腰三角形;作點O關(guān)于AP1的對稱點P2,則△OAP2為等腰三角形;以O(shè)點為圓心,OA為半徑畫弧交x軸與P3,P4,則△OAP3、△OAP4為等腰三角形;然后利用線段長分別確定各點坐標(biāo).解答:解:(1)把(a,b)、(a+2,b+k)代入y=2x+1得 ,解得k=4,所以反比例函數(shù)解析式為y= ;(2)解方程組 得 或 ,∵A點在第一象限,∴點A的坐標(biāo)為(1,1);(3)存在.OA= = ,滿足條件的點P坐標(biāo)為( 1,0)、(2,0)、( ,0)、(? ,0).點評:本題考查了反比例函數(shù)的綜合題:掌握反比例函數(shù)圖象上點的坐標(biāo)特征、等腰三角形的判定與性質(zhì);運(yùn)用分類討論的思想解決問題. 八、(14分)26.(14分)(2010•鞍山)在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.點E在下底邊BC上,點F在腰AB上.(1)若EF平分等腰梯形ABCD的周長,設(shè)BE長為x,試用含x的代數(shù)式表示△BEF的面積;(2)是否存在線段EF將等腰梯形ABCD的周長和面積同時平分?若存在,求出此時BE的長;若不存在,請說明理由;(3)是否存在線段EF將等腰梯形ABCD的周長和面積同時分成1:2的兩部分?若存在,求出此時BE的長;若不存在,請說明理由.
考點:等腰梯形的性質(zhì);一元二次方程的應(yīng)用.專題:壓軸題;開放型.分析:(1)先作AK⊥BC于K,F(xiàn)G⊥BC于G,根據(jù)等腰梯形的性質(zhì),可得BK= (BC?AD)=3,在Rt△ABK中,利用勾股定理可求出AK=4,由于AK、FG垂直于同一直線故平行,可得比例線段,求出FG= ,利用面積公式可得S△BEF=? x2+ x(7≤x≤10,因為BF最大取5,故BE最小取7,又不能超過10);(2)根據(jù)題意,結(jié)合(1)中面積的表達(dá)式,可以得到 S梯形ABCD=? x2+ x,即14=? x2+ x,解得,x1=7,x2=5(不合題意,舍去);(3)仍然按照(1)和(2)的步驟和方法去做就可以了,注意不是分成相等的兩份,而是1:2就可以了,得到關(guān)于x的一元二次方程,先求出根的判別式△,由于△<0,故不存在實數(shù)根.解答:解:(1)由已知條件得:梯形周長為24,高4,面積為28.過點F作FG⊥BC于G∴BK= (BC?AD)= ×(10?4)=3,∴AK= =4,∵EF平分等腰梯形ABCD的周長,設(shè)BE長為x,∴BF=12?x,過點A作AK⊥BC于K∴△BFG∽△BAK,∴ ,即: ,則可得:FG= ×4∴S△BEF= BE•FG=? x2+ x(7≤x≤10);(3分)(2)存在(1分)由(1)得:? x2+ x=14,x2?12x+35=0,(x?7)(x?5)=0,解得x1=7,x2=5(不合題意舍去)∴存在線段EF將等腰梯形ABCD的周長與面積同時平分,此時BE=7;(3)不存在(1分)假設(shè)存在,第一種情況:顯然是:S△BEF:SAFECD=1:2,(BE+BF):(AF+AD+DC+CE)=1:2(1分),梯形ABCD周長的三分之一為 =8,面積的三分之一為 .因為BE=X,所以BF=(8?X)∵FM∥AH,∴△FBM∽△ABH,∴BF:AB=FM:AH,∴ = ,∴FM= ,∴△BEF的面積= ,當(dāng) 梯形ABCD的面積= 時,∴ = ,整理方程得:?3x2+24x?70=0,△=576?840<0∴不存在這樣的實數(shù)x.即不存在線段EF將等腰梯形ABCD的周長和面積.同時分成1:2的兩部分.(2分)第二種情況:顯然是:S△BEF:SAFECD=2:1,(BE+BF):(AF+AD+DC+CE)=2:1(1分),梯形ABCD周長的三分之一為 =8,面積的三分之一為 .因為BE=x,所以BF=(8?x)∵FM∥AH,∴△FBM∽△ABH,∴BF:AB=FM:AH,∴ ,∴FM= ,∴△BEF的面積= ,當(dāng) 梯形ABCD的面積= 時,∴ = ,整理方程得:3x2?24x+140=0,△<0∴不存在這樣的實數(shù)x.即不存在線段EF將等腰梯形ABCD的周長和面積.同時分成1:2的兩部分. 點評:本題利用了等腰梯形的性質(zhì)、垂直于同一直線的兩直線平行,勾股定理,三角形、梯形面積公式,解一元二次方程,以及一元二次方程根的判別式等知識.
右腦記憶論壇 | 快速記憶法 | 記憶力培訓(xùn) | 速讀培訓(xùn) | 速讀軟件 | 右腦培訓(xùn) | 站內(nèi)搜索 | 網(wǎng)站地圖
Copyright(C) 2006-2014 逍遙右腦 All Rights Reserved