汕頭市金中學(xué)2012-2013學(xué)年度第一學(xué)期期中考試高三科數(shù)學(xué) 試題卷本試題分第Ⅰ卷()和第Ⅱ卷(非)兩部分,滿分150分,時(shí)間120分鐘.第Ⅰ卷 (選擇題 共50分)一、選擇題:(本大題共10小題,每小題5分,共50分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)
1.已知 為非零實(shí)數(shù),且 ,則下列命題成立的是 ( )A. B. C. D. 2.已知集合 , ,則 ( )A. B. C. D. 3.設(shè) , 那么“ ”是“ ”的( )A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件4.在平面直角坐標(biāo)系中,不等式組 表示的平面區(qū)域面積是( ).A. B. C. D. 5.下列命題中正確的是( )A. 的最小值是2B. 的最小值是2 C. 的最大值是 D. 的最小值是 6.函數(shù) 的最小值是 ( )A. 1 B. C.2 D.07.已知 ,則 的大小為 ( )A. B. C. D. 8.函數(shù) 的圖象大致是( )
9.已知函數(shù) 是定義在實(shí)數(shù)集R上得不恒為零的偶函數(shù),且對任意實(shí)數(shù) 都有 ,則 =( )A.0B. C.1 D. 10.設(shè)底面為正三角形的直棱柱體積為V,那么表面積最小時(shí),底面邊長為 ( )A. B. C. D. 2 第Ⅱ卷 (非選擇題 共100分)二、題:(本大題共4小題,每小題5分,共20分.)11. 滿足條件 的所有集合B的個(gè)數(shù)是______.12.已知定義在R上的奇函數(shù) 滿足 = (x≥0),若 ,則實(shí)數(shù) 的取值范圍是________.13.若關(guān)于 的方程 只有一個(gè)實(shí)根,則實(shí)數(shù) 14.給出一列三個(gè)命題:①函數(shù) 為奇函數(shù)的充要條件是 ;②若函數(shù) 的值域是R,則 ;③若函數(shù) 是偶函數(shù),則函數(shù) 的圖象關(guān)于直線 對稱.其中正確的命題序號是 .三、解答題:(本大題共6小題,共80分.解答應(yīng)寫出字說明,證明過程或演算步驟.)15.(本小題滿分12分)已知集合 , .(Ⅰ)若 ,求集合 、集合
(Ⅱ)若 ,求 的取值范圍。
16.(本小題滿分12分)已知二次函數(shù) 滿足 , ,求 的取值范圍。17.(本小題滿分14分)已知函數(shù) 在 處取得極值,記點(diǎn) .⑴求 的值;⑵證明:線段 與曲線 存在異于 、 的公共點(diǎn);18.(本小題滿分14分)某種商品的成本為5元/ 件,開始按8元/件銷售,銷售量為50件,為了獲得最大利潤,商家先后采取了提價(jià)與降價(jià)兩種措施進(jìn)行試銷。經(jīng)試銷發(fā)現(xiàn):銷售價(jià)每上漲1元每天銷售量就減少10件;而降價(jià)后,日銷售量Q(件)與實(shí)際銷售價(jià)x(元)滿足關(guān)系: (1)求總利潤(利潤=銷售額-成本)y(元)與銷售價(jià)x(件)的函數(shù)關(guān)系式;(2)試問:當(dāng)實(shí)際銷售價(jià)為多少元時(shí),總利潤最大.19.(本小題滿分14分)已知定義域?yàn)镽的函數(shù) 是奇函數(shù).(1)求 的值;(2)用定義證明 在 上為減函數(shù).(3)若對于任意 ,不等式 恒成立,求 的范圍.
20、(本小題滿分14分)已知函數(shù) 在 處取得極值 .⑴求 的解析式;⑵設(shè) 是曲線 上除原點(diǎn) 外的任意一點(diǎn),過 的中點(diǎn)且垂直于 軸的直線交曲線于點(diǎn) ,試問:是否存在這樣的點(diǎn) ,使得曲線在點(diǎn) 處的切線與 平行?若存在,求出點(diǎn) 的坐標(biāo);若不存在,說明理由;⑶設(shè)函數(shù) ,若對于任意 ,總存在 ,使得 ,求實(shí)數(shù) 的取值范圍.
汕頭市金中學(xué)2012-2013學(xué)年度第一學(xué)期期中考試高三科數(shù)學(xué) 參考答案一、選擇題(50分)題號12345678910答案CBADCBADAC二、題(20分)11.4 12. (-3,1) 13. 14.①②三、解答題(80分)15.(本小題滿分12分)解:(Ⅰ)由 ,得 ,即 4分由 或 即 9分(Ⅱ) , 的取值范圍是 12分16.(本小題滿分12分)解:法一:設(shè) ,則有 ,即 又 , , 法二:線性規(guī)劃由已知得 (*)(1分)(2分)(*)如圖陰影所示直線 平行移動(dòng) ,可知 隨截距變大而變大,故 過A點(diǎn)時(shí)取最小值,過B點(diǎn)時(shí)取最大值。(8分)由 此時(shí) =2(9分)由 此時(shí) =27(11分)故 (12分)17.(本小題滿分12分)解法一:∵ ,依題意, ∴ ,(2分) 由 ,得 (3分) 令 , 的單調(diào)增區(qū)間為 和 ,,單調(diào)減區(qū)間為 (5分) 所以函數(shù) 在 處取得極值。 故 (7分) 所以直線 的方程為 (8分) 由 得 (9分) 令 ,易得 ,(11分)而 的圖像在 內(nèi)是一條連續(xù)不斷的曲線,故 在 內(nèi)存在零點(diǎn) ,這表明線段 與曲線 有異于 的公共點(diǎn)。(12分)解法二:同解法一,可得直線 的方程為 (8分)由 得 (9分)解得 (11分)所以線段 與曲線 有異于 的公共點(diǎn) 。 (12分)
18. (本小題滿分14分)解:(1)依題意得: (5分)(2)由(1)得:當(dāng) 時(shí), 當(dāng) 時(shí), , 為增函數(shù) 當(dāng) 時(shí), 為減函數(shù) 當(dāng) 時(shí), (8分)當(dāng) 時(shí), (10分)當(dāng) 時(shí), 當(dāng) 時(shí), (12分)綜上知:當(dāng) 時(shí),總利潤最大,(13分) 最大值為195 (14分)19.(本小題滿分14分)解:(1) 又 ,得 (2分) 經(jīng)檢驗(yàn) 符合題意.(3分) (2)任取 (4分) 則 = = (6分) (8分)(3) ,不等式 恒成立, 為奇函數(shù), (10分)為減函數(shù), (11分)即 恒成立,而 (13分) (14分)
20. (本小題滿分14分)解:⑴∵ ,∴ .又 在 處取得極值 .∴ ,即 ,解得 , ,經(jīng)檢驗(yàn)滿足題意,∴ .……… (4分)⑵由⑴知 .假設(shè)存在滿足條件的點(diǎn) ,且 ,則 ,又 .則由 ,得 ,∴ ,∵ ,∴ ,得 .故存在滿足條件的點(diǎn) ,此時(shí)點(diǎn) 的坐標(biāo)為 或 . ………… (8分)⑶解法 : ,令 ,得 或 .當(dāng) 變化時(shí), 、 的變化情況如下表: 單調(diào)遞減極小值單調(diào)遞增極大值單調(diào)遞減∴ 在 處取得極小值 ,在 處取得極大值 .又 時(shí), ,∴ 的最小值為 . ∵對于任意的 ,總存在 ,使得 ,∴當(dāng) 時(shí), 最小值不大于 .又 .∴當(dāng) 時(shí), 的最小值為 ,由 ,得 ;當(dāng) 時(shí), 最小值為 ,由 ,得 ;當(dāng) 時(shí), 的最小值為 .由 ,即 ,解得 或 .又 ,∴此時(shí) 不存在. 綜上, 的取值范圍是 . ………… (14分) 解法 :同解法 得 的最小值為 . ∵對于任意的 ,總存在 ,使得 ,∴當(dāng) 時(shí), 有解,即 在 上有解.設(shè) ,則得 , 或 ,得 或 . ∴ 或 時(shí), 在 上有解,故 的取值范圍是 . 解法 :同解法 得 的最小值為 . ∵對于任意的 ,總存在 ,使得 ,∴當(dāng) 時(shí), 有解,即 在 上有解.令 ,則 ,∴ .∴當(dāng) 時(shí), ;當(dāng) 時(shí),得 ,不成立,∴ 不存在;當(dāng) 時(shí), .令 ,∵ 時(shí), ,∴ 在 上為減函數(shù),∴ ,∴ . 綜上, 的取值范圍是 .
右腦記憶論壇 | 快速記憶法 | 記憶力培訓(xùn) | 速讀培訓(xùn) | 速讀軟件
Copyright(C) 2006-2014 逍遙右腦 All Rights Reserved