逍遙右腦記憶網(wǎng)-免費(fèi)提供各種記憶力訓(xùn)練學(xué)習(xí)方法!
超右腦
|
催眠術(shù)
|
潛能開發(fā)
|
影像閱讀
|
右腦開發(fā)訓(xùn)練
|
網(wǎng)站地圖
記憶方法
右腦開發(fā)
快速閱讀
思維導(dǎo)圖
學(xué)習(xí)方法
學(xué)習(xí)計(jì)劃
作文大全
早期教育
勵(lì)志名言
右腦記憶
記憶法
|
記憶宮殿
|
記憶力訓(xùn)練
記憶術(shù)
|
最強(qiáng)大腦
|
右腦記憶法
學(xué)習(xí)方法
高中學(xué)習(xí)方法
|
高考
|
小學(xué)資源
|
單詞記憶
初中學(xué)習(xí)方法
|
中考
|
教案設(shè)計(jì)
|
試題中心
潛能成功
吸引力法則
|
成功學(xué)
|
九型人格
注意力訓(xùn)練
|
潛意識
|
思維模式
高中學(xué)習(xí)方法
高中語文
高中英語
高中數(shù)學(xué)
高中物理
高中化學(xué)
高中生物
高中政治
高中歷史
高中地理
高中教案
高中試題
高一學(xué)習(xí)方法
高一語文
高一數(shù)學(xué)
高一英語
高一物理
高一化學(xué)
高一生物
高一政治
高一歷史
高一地理
高一學(xué)習(xí)
高二學(xué)習(xí)方法
高二語文
高二數(shù)學(xué)
高二英語
高二物理
高二化學(xué)
高二生物
高二政治
高二歷史
高二地理
高二學(xué)習(xí)
高三學(xué)習(xí)方法
高三語文
高三數(shù)學(xué)
高三英語
高三物理
高三化學(xué)
高三生物
高三政治
高三歷史
高三地理
高三學(xué)習(xí)
逍遙右腦記憶
>
高中學(xué)習(xí)方法
>
高中數(shù)學(xué)
>
數(shù)列的概念與簡單表示法測試題
編輯:
逍遙路
關(guān)鍵詞:
高中數(shù)學(xué)
來源:
高中學(xué)習(xí)網(wǎng)
1.?dāng)?shù)列1,12,14,…,12n,…是( )
A.遞增數(shù)列 B.遞減數(shù)列
C.常數(shù)列 D.?dāng)[動(dòng)數(shù)列
答案:B
2.已知數(shù)列{an}的通項(xiàng)公式an=12[1+(-1)n+1],則該數(shù)列的前4項(xiàng)依次是( )
A.1,0,1,0 B.0,1,0,1
C.12,0,12,0 D.2,0,2,0
答案:A
3.?dāng)?shù)列{an}的通項(xiàng)公式an=cn+dn,又知a2=32,a4=154,則a10=__________.
答案:9910
4.已知數(shù)列{an}的通項(xiàng)公式an=2n2+n.
(1)求a8、a10.
(2)問:110是不是它的項(xiàng)?若是,為第幾項(xiàng)?
解:(1)a8=282+8=136,a10=2102+10=155.
(2)令an=2n2+n=110,∴n2+n=20.
解得n=4.∴110是數(shù)列的第4項(xiàng).
一、選擇題
1.已知數(shù)列{an}中,an=n2+n,則a3等于( )
A.3 B.9
C.12 D.20
答案:C
2.下列數(shù)列中,既是遞增數(shù)列又是無窮數(shù)列的是( )
A.1,12,13,14,…
B.-1,-2,-3,-4,…
C.-1,-12,-14,-18
高中學(xué)習(xí)方法
,…
D.1,2,3,…,n
解析:選C.對于A,an=1n,n∈N*,它是無窮遞減數(shù)列;對于B,an=-n,n∈N*,它也是無窮遞減數(shù)列;D是有窮數(shù)列;對于C,an=-(12)n-1,它是無窮遞增數(shù)列.
3.下列說法不正確的是( )
A.根據(jù)通項(xiàng)公式可以求出數(shù)列的任何一項(xiàng)
B.任何數(shù)列都有通項(xiàng)公式
C.一個(gè)數(shù)列可能有幾個(gè)不同形式的通項(xiàng)公式
D.有些數(shù)列可能不存在最大項(xiàng)
解析:選B.不是所有的數(shù)列都有通項(xiàng)公式,如0,1,2,1,0,….
4.?dāng)?shù)列23,45,67,89,…的第10項(xiàng)是( )
A.1617 B.1819
C.2021 D.2223
解析:選C.由題意知數(shù)列的通項(xiàng)公式是an=2n2n+1,
∴a10=2×102×10+1=2021.故選C.
5.已知非零數(shù)列{an}的遞推公式為an=nn-1•an-1(n>1),則a4=( )
A.3a1 B.2a1
C.4a1 D.1
解析:選C.依次對遞推公式中的n賦值,當(dāng)n=2時(shí),a2=2a1;當(dāng)n=3時(shí),a3=32a2=3a1;當(dāng)n=4時(shí),a4=43a3=4a1.
6.(2011年浙江樂嘉調(diào)研)已知數(shù)列{an}滿足a1>0,且an+1=12an,則數(shù)列{an}是( )
A.遞增數(shù)列 B.遞減數(shù)列
C.常數(shù)列 D.?dāng)[動(dòng)數(shù)列
解析:選B.由a1>0,且an+1=12an,則an>0.
又an+1an=12<1,∴an+1<an.
因此數(shù)列{an}為遞減數(shù)列.
二、填空題
7.已知數(shù)列{an}的通項(xiàng)公式an=19-2n,則使an>0成立的最大正整數(shù)n的值為__________.
解析:由an=19-2n>0,得n<192,∵n∈N*,∴n≤9.
答案:9
8.已知數(shù)列{an}滿足a1=2,a2=5,a3=23,且an+1=αan+β,則α、β的值分別為________、________.
解析:由題意an+1=αan+β,
得a2=αa1+βa3=αa2+β⇒5=2α+β23=5α+β⇒α=6,β=-7.
答案:6。7
9.已知{an}滿足an=-1nan-1+1(n≥2),a7=47,則a5=________.
解析:a7=-1a6+1,a6=1a5+1,∴a5=34.
答案:34
三、解答題
10.寫出數(shù)列1,23,35,47,…的一個(gè)通項(xiàng)公式,并判斷它的增減性.
解:數(shù)列的一個(gè)通項(xiàng)公式an=n2n-1.
又∵an+1-an=n+12n+1-n2n-1=-12n+12n-1<0,
∴an+1<an.
∴{an}是遞減數(shù)列.
11.在數(shù)列{an}中,a1=3,a17=67,通項(xiàng)公式是關(guān)于n的一次函數(shù).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求a2011;
(3)2011是否為數(shù)列{an}中的項(xiàng)?若是,為第幾項(xiàng)?
解:(1)設(shè)an=kn+b(k≠0),則有k+b=3,17k+b=67,
解得k=4,b=-1.∴an=4n-1.
(2)a2011=4×2011-1=8043.
(3)令2011=4n-1,解得n=503∈N*,
∴2011是數(shù)列{an}的第503項(xiàng).
12.?dāng)?shù)列{an}的通項(xiàng)公式為an=30+n-n2.
(1)問-60是否是{an}中的一項(xiàng)?
(2)當(dāng)n分別取何值時(shí),an=0,an>0,an<0?
解:(1)假設(shè)-60是{an}中的一項(xiàng),則-60=30+n-n2.
解得n=10或n=-9(舍去).
∴-60是{an}的第10項(xiàng).
(2)分別令30+n-n2=0;>0;<0,
解得n=6;0<n<6;n>6,
即n=6時(shí),an=0;
0<n<6時(shí),an>0;
n>6時(shí),an<0.
本文來自:逍遙右腦記憶 http://www.portlandfoamroofing.com/gaozhong/28217.html
相關(guān)閱讀:
集合的基本運(yùn)算
上一篇:
扇形計(jì)算公式
下一篇:
高三數(shù)學(xué)第一輪復(fù)習(xí):首輪復(fù)習(xí)緊盯函數(shù)
相關(guān)主題
集合的基本運(yùn)算
高一數(shù)學(xué)怎么學(xué)
等比數(shù)列、數(shù)列求和
高中代數(shù)-三角函數(shù)
高中數(shù)學(xué)成績差的原因及解決方法
數(shù)學(xué)其實(shí)不難
怎樣克服高二數(shù)學(xué)學(xué)習(xí)障礙
高考前高三數(shù)學(xué)每輪復(fù)習(xí)要領(lǐng)
子集、全集、補(bǔ)集
理發(fā)師悖論
相關(guān)推薦
推薦閱讀
跨入新高中 你準(zhǔn)備好了嗎
對于即將步入生活的來講,對升已經(jīng)不再有新鮮感了。因?yàn)樯?jīng)過了緊張的和激烈的之后,對緊……
怎樣克服高二數(shù)學(xué)學(xué)習(xí)障礙
堅(jiān)持四重、三到、八引導(dǎo),把握的狀態(tài),調(diào)動(dòng)的積極性和創(chuàng)造性,使真正領(lǐng)悟和體會到的無窮樂……
名師導(dǎo)學(xué):高考數(shù)學(xué)首輪復(fù)習(xí)五項(xiàng)建議
古語云:授人以魚,只供一飯。授人以漁,則終身受用無窮。學(xué),更要學(xué)。伴隨著奧運(yùn)會的如火……
高二數(shù)學(xué)教案 線段的垂直平分線
教學(xué)目的: 1、使理解線段的垂直平分線的性質(zhì)定理及逆定理,掌握這兩個(gè)定理的關(guān)系并會用這兩……
數(shù)學(xué)悖論有趣
“悖論”這個(gè)詞的意義比較豐富,它包括一切與人的直覺和日常經(jīng)驗(yàn)相矛盾的數(shù)學(xué)結(jié)論。那些結(jié)……
相關(guān)閱讀
數(shù)學(xué)解題中的通性通法
十四圈
名師點(diǎn)撥高考數(shù)學(xué)復(fù)習(xí):抓緊時(shí)間過關(guān)斬將
高一數(shù)學(xué)《兩條直線的交點(diǎn)坐標(biāo)》教案
高考前高三數(shù)學(xué)每輪復(fù)習(xí)要領(lǐng)
高二學(xué)好數(shù)學(xué)概念的六個(gè)方法
高考數(shù)學(xué)復(fù)習(xí):淺談高三數(shù)學(xué)第一輪復(fù)習(xí)要
學(xué)習(xí)數(shù)學(xué)要做筆記
積化和差公式
文科生備考經(jīng)驗(yàn):掌握節(jié)奏備戰(zhàn)高考
右腦記憶論壇
|
快速記憶法
|
記憶力培訓(xùn)
|
速讀培訓(xùn)
|
速讀軟件
Copyright(C) 2006-2014
逍遙右腦
All Rights Reserved