逍遙右腦記憶網(wǎng)-免費提供各種記憶力訓(xùn)練學(xué)習(xí)方法!
超右腦
|
催眠術(shù)
|
潛能開發(fā)
|
影像閱讀
|
右腦開發(fā)訓(xùn)練
|
網(wǎng)站地圖
記憶方法
右腦開發(fā)
快速閱讀
思維導(dǎo)圖
學(xué)習(xí)方法
學(xué)習(xí)計劃
作文大全
早期教育
勵志名言
右腦記憶
記憶法
|
記憶宮殿
|
記憶力訓(xùn)練
記憶術(shù)
|
最強(qiáng)大腦
|
右腦記憶法
學(xué)習(xí)方法
高中學(xué)習(xí)方法
|
高考
|
小學(xué)資源
|
單詞記憶
初中學(xué)習(xí)方法
|
中考
|
教案設(shè)計
|
試題中心
潛能成功
吸引力法則
|
成功學(xué)
|
九型人格
注意力訓(xùn)練
|
潛意識
|
思維模式
高中學(xué)習(xí)方法
高中語文
高中英語
高中數(shù)學(xué)
高中物理
高中化學(xué)
高中生物
高中政治
高中歷史
高中地理
高中教案
高中試題
高一學(xué)習(xí)方法
高一語文
高一數(shù)學(xué)
高一英語
高一物理
高一化學(xué)
高一生物
高一政治
高一歷史
高一地理
高一學(xué)習(xí)
高二學(xué)習(xí)方法
高二語文
高二數(shù)學(xué)
高二英語
高二物理
高二化學(xué)
高二生物
高二政治
高二歷史
高二地理
高二學(xué)習(xí)
高三學(xué)習(xí)方法
高三語文
高三數(shù)學(xué)
高三英語
高三物理
高三化學(xué)
高三生物
高三政治
高三歷史
高三地理
高三學(xué)習(xí)
逍遙右腦記憶
>
高中學(xué)習(xí)方法
>
高中數(shù)學(xué)
>
高二數(shù)學(xué)教案 概率的基本性質(zhì)
編輯:
逍遙路
關(guān)鍵詞:
高中數(shù)學(xué)
來源:
高中學(xué)習(xí)網(wǎng)
上一次課我們了概率的意義,舉了生活中與概率有關(guān)的許多實例。今天我們要來研究概率的基本性質(zhì)。在研究性質(zhì)之前,我們先來一起研究一下事件之間有什么關(guān)系。
一、事件的關(guān)系與運算
做擲骰子的實驗,思考,回答該試驗包含了哪些事件(即可能出現(xiàn)的結(jié)果)
學(xué)生可能回答:?出現(xiàn)的點數(shù)=1?記為C1, ?出現(xiàn)的點數(shù)=2?記為C2, ?出現(xiàn)的點數(shù)=3?記為C3, ?出現(xiàn)的點數(shù)=4?記為C4, ?出現(xiàn)的點數(shù)=5?記為C5, ?出現(xiàn)的點數(shù)=6?記為C6.
老師:是不是只有這6個事件呢?請大家思考,?出現(xiàn)的點數(shù)不大于1?(記為D1)是不是該試驗的事件
高中學(xué)習(xí)方法
?(學(xué)生回答:是)類似的,?出現(xiàn)的點數(shù)大于3?記為D2,?出現(xiàn)的點數(shù)小于5?記為D3,?出現(xiàn)的點數(shù)小于7?記為E,?出現(xiàn)的點數(shù)大于6?記為F,?出現(xiàn)的點數(shù)為偶數(shù)?記為G,?出現(xiàn)的點數(shù)為奇數(shù)?記為H,等等都是該試驗的事件。 那么大家思考一下這些事件之間有什么樣的關(guān)系呢?
1、 學(xué)生思考若事件C1發(fā)生(即出現(xiàn)點數(shù)為1),那么事件H是否一定也發(fā)生?
學(xué)生回答:是,因為1是奇數(shù)
我們把這種兩個事件中如果一事件發(fā)生,則另一事件一定發(fā)生的關(guān)系,稱為包含關(guān)系。具體說:一般地,對于事件A和事件B,如果事件A發(fā)生,則事件B一定發(fā)生,稱事件B包含事件A(或事件A包含于事件B),記作 (或 )
特殊地,不可能事件記為 ,任何事件都包含 。
練習(xí):寫出 D3與E的包含關(guān)系(D3 E)
2、再來看一下C1和D1間的關(guān)系:先考慮一下它們之間有沒有包含關(guān)系?即若C1發(fā)生,D1
是否發(fā)生?(是,即C1 D1);又若D1發(fā)生,C1是否發(fā)生?(是,即D1 C1)
兩個事件A,B中,若 ,那么稱事件A與事件B相等,記作A=B。所以C1 和D1相等。
“下面有同學(xué)已經(jīng)發(fā)現(xiàn)了,事件的包含關(guān)系和相等關(guān)系與集合的這兩種關(guān)系很相似,很好,下面我們就一起來考慮一下能不能把事件與集合做對比。”
試驗的可能結(jié)果的全體 ←→ 全集
↓ ↓
每一個事件 ←→ 子集
這樣我們就把事件和集合對應(yīng)起來了,用已有的集合間關(guān)系來分析事件間的關(guān)系。
3、集合之間除了有包含和相等的關(guān)系以外,還有集合的并,由此可以推出相應(yīng)的,事件A和事件B的并事件,記作A∪B,從運算的角度說,并事件也叫做和事件,可以記為A+B。我們知道并集A∪B中的任一個元素或者屬于集合A或者屬于集合B,類似的事件A∪B發(fā)生等價于或者事件A發(fā)生或者事件B發(fā)生。
練習(xí):G∪D3 =?G=?2,4,6?,D3 =?1,2,3,4?,所以G∪D3 =?1,2,3,4,6?。若出現(xiàn)的點數(shù)為1,則D3發(fā)生,G不發(fā)生;若出現(xiàn)的點數(shù)為4,則D3和G均發(fā)生;若出現(xiàn)的點數(shù)為6,則D3不發(fā)生,G發(fā)生。
由此我們可以推出事件A+B發(fā)生有三種情況:A發(fā)生,B不發(fā)生;A不發(fā)生,B發(fā)生;A和B都發(fā)生。
4、集合之間的交集A∩B,類似地有事件A和事件B的交事件,記為A∩B,從運算的角度說,交事件也叫做積事件,記作AB。我們知道交集A∩B中的任意元素屬于集合A且屬于集合B,類似地,事件A∩B發(fā)生等價于事件A發(fā)生且事件B發(fā)生。
練習(xí):D2∩H=?(?大于3的奇數(shù)?=C5)
5、事件A與事件B的交事件的特殊情況,當(dāng)A∩B= (不可能事件)時,稱事件A與事件B互斥。(即兩事件不能同時發(fā)生)
6、在兩事件互斥的條件上,再加上事件A∪事件B為必然事件,則稱事件A與事件B為對立事件。(即事件A和事件B有且只有一個發(fā)生)
練習(xí):⑴請在擲骰子試驗的事件中,找到兩個事件互為對立事件。(G,H)
⑵不可能事件的對立事件
7、集合間的關(guān)系可以用Venn圖來表示,類似事件間的關(guān)系我們也可以用圖形來表示。
: A=B:
A∪B: A∩B:
A、B互斥: A、B對立:
8、區(qū)別互斥事件與對立事件:從圖像上我們也可以看出對立事件是互斥事件的特例,但互斥事件并非都是對立事件。
練習(xí):⑴書P121練習(xí)題目4、5
⑵判斷下列事件是不是互斥事件?是不是對立事件?
① 某射手射擊一次,命中的環(huán)數(shù)大于8與命中的環(huán)數(shù)小于8;
② 統(tǒng)計一個班級期末成績,平均分不低于75分與平均分不高于75分;
③ 從裝有3個紅球和3個白球的口袋內(nèi)任取2個球,至少有一個白球和都是紅球。
答案:①是互斥事件但不是對立事件;②既不是互斥事件也不是對立事件
③既是互斥事件有是對立事件。
二、概率的基本性質(zhì):
提問:頻率=頻數(shù)\試驗的次數(shù)。
我們知道當(dāng)試驗次數(shù)足夠大時,用頻率來估計概率,由于頻率在0~1之間,所以,可以得到概率的基本性質(zhì):
1、任何事件的概率P(A),0?P(A)?1
2、那大家思考,什么事件發(fā)生的概率為1,對,記必然事件為E,P(E)=1
3、記不可能事件為F,P(F)=0
4、當(dāng)A與B互斥時,A∪B發(fā)生的頻數(shù)等于A發(fā)生的頻數(shù)加上B發(fā)生的頻數(shù),所以
= + ,所以P(A∪B)=P(A)+P(B)。
5、特別地,若A與B為對立事件,則A∪B為必然事件,P(A∪B)=1=P(A)+P(B)→P(A)=1-P(B)。
例題:教材P121例
練習(xí):由經(jīng)驗得知,在某建設(shè)銀行營業(yè)窗口排隊等候存取款的人數(shù)及其概率如下:
排隊人數(shù)
0 ~ 10 人
11 ~ 20 人
21 ~ 30 人
31 ~ 40 人
41人以上
概率
0.12
0.27
0.30
0.23
0.08
計算:(1)至多20人排隊的概率;
(2)至少11人排隊的概率。
三、小結(jié):
1、把事件與集合對應(yīng)起來,掌握事件間的關(guān)系,總結(jié)如下表
符號
Venn圖
概率論
集合論
必然事件
全集
不可能事件
空集
A
事件
子集
事件B包含事件A
(事件A發(fā)生,則B一定發(fā)生)
集合B包含集合A
A = B
事件A與事件B相等
集合A與集合B相等
A∪B
(A+B)
事件A與事件B的并事件
(或者事件A發(fā)生,或者事件B發(fā)生)
集合A與集合B的并
A∩B
(AB)
事件A與事件B的交事件
(事件A發(fā)生,且事件B發(fā)生)
集合A與集合B的交
A∩B=
事件A與事件B互斥
(事件A和事件B不能同時發(fā)生)
集合A與集合B不相交
A∩B=
A∪B=
事件A與事件B對立
(事件A與事件B有且僅有一個發(fā)生)
集合A與集合B不相交
2、概率的基本性質(zhì):(1)0?P(A)?1 (2)概率的加法公式
四、課后思考:概率的基本性質(zhì)4,若把互斥條件去掉,即任意事件A、B,則P(A∪B)=P(A)+P(B)-P(AB)
提示:采用圖式分析。
本文來自:逍遙右腦記憶 http://www.portlandfoamroofing.com/gaozhong/33203.html
相關(guān)閱讀:
幾何的三大問題
上一篇:
高中代數(shù)-排列 組合 二項式定理
下一篇:
高一數(shù)學(xué)《函數(shù)模型的應(yīng)用實例》教案
相關(guān)主題
幾何的三大問題
集合的基本運算
高三數(shù)學(xué)教案 演繹推理
數(shù)學(xué)考試解題四項注意
高一數(shù)學(xué)怎么學(xué)
等比數(shù)列、數(shù)列求和
高中代數(shù)-三角函數(shù)
高三數(shù)學(xué)教案 平面向量的解題技巧
高中數(shù)學(xué)成績差的原因及解決方法
怎樣做數(shù)學(xué)筆記
相關(guān)推薦
推薦閱讀
高三數(shù)學(xué)三角函數(shù)、解三角形章末復(fù)習(xí)測試
三角函數(shù)、解三角形章末測試(有答案) 一、選擇題(本大題共12小題,每小題5分,共60分.在……
怎樣學(xué)好高一數(shù)學(xué)?
是階段承前啟后的關(guān)鍵期,不少升入后,能否適應(yīng)的,是擺在新生面前一個亟待解決的問題。 高……
如何做解析幾何題
每次和同學(xué)們談及,大家似乎都有同感:難,解析幾何又是難中之難。其實不然,解析幾何題目……
數(shù)學(xué)二輪復(fù)習(xí)策略與重點
第一輪復(fù)習(xí)重在基礎(chǔ),指導(dǎo)思想是全面、系統(tǒng)、靈活,在抓好單元知識、夯實“三基”的基礎(chǔ)上……
高三學(xué)生學(xué)習(xí)的六大步驟
一是反思。吾日三省吾身。反思中明確自己的優(yōu)勢和不足。剛上時,文綜主觀題是我的弱勢,是……
相關(guān)閱讀
跨入新高中 你準(zhǔn)備好了嗎
數(shù)學(xué)解題中的通性通法
學(xué)習(xí)數(shù)學(xué)就是學(xué)習(xí)解題
3.2.1 直線的點斜式方程(教學(xué)設(shè)計)
高三數(shù)學(xué)復(fù)習(xí)最有效的方法
練習(xí)解決生活問題 高考前一個月數(shù)學(xué)如何
怎樣學(xué)好高中數(shù)學(xué)
數(shù)學(xué)不好學(xué)生三種情況及解決辦法
數(shù)學(xué)復(fù)習(xí):做題是為了理解知識點
每天“過電影”高考最后兩周沖刺數(shù)學(xué)如何
右腦記憶論壇
|
快速記憶法
|
記憶力培訓(xùn)
|
速讀培訓(xùn)
|
速讀軟件
Copyright(C) 2006-2014
逍遙右腦
All Rights Reserved