逍遙右腦記憶網(wǎng)-免費(fèi)提供各種記憶力訓(xùn)練學(xué)習(xí)方法!
超右腦
|
催眠術(shù)
|
潛能開發(fā)
|
影像閱讀
|
右腦開發(fā)訓(xùn)練
|
網(wǎng)站地圖
記憶方法
右腦開發(fā)
快速閱讀
思維導(dǎo)圖
學(xué)習(xí)方法
學(xué)習(xí)計(jì)劃
作文大全
早期教育
勵(lì)志名言
右腦記憶
記憶法
|
記憶宮殿
|
記憶力訓(xùn)練
記憶術(shù)
|
最強(qiáng)大腦
|
右腦記憶法
學(xué)習(xí)方法
高中學(xué)習(xí)方法
|
高考
|
小學(xué)資源
|
單詞記憶
初中學(xué)習(xí)方法
|
中考
|
教案設(shè)計(jì)
|
試題中心
潛能成功
吸引力法則
|
成功學(xué)
|
九型人格
注意力訓(xùn)練
|
潛意識(shí)
|
思維模式
高中學(xué)習(xí)方法
高中語(yǔ)文
高中英語(yǔ)
高中數(shù)學(xué)
高中物理
高中化學(xué)
高中生物
高中政治
高中歷史
高中地理
高中教案
高中試題
高一學(xué)習(xí)方法
高一語(yǔ)文
高一數(shù)學(xué)
高一英語(yǔ)
高一物理
高一化學(xué)
高一生物
高一政治
高一歷史
高一地理
高一學(xué)習(xí)
高二學(xué)習(xí)方法
高二語(yǔ)文
高二數(shù)學(xué)
高二英語(yǔ)
高二物理
高二化學(xué)
高二生物
高二政治
高二歷史
高二地理
高二學(xué)習(xí)
高三學(xué)習(xí)方法
高三語(yǔ)文
高三數(shù)學(xué)
高三英語(yǔ)
高三物理
高三化學(xué)
高三生物
高三政治
高三歷史
高三地理
高三學(xué)習(xí)
逍遙右腦記憶
>
高中學(xué)習(xí)方法
>
高中數(shù)學(xué)
>
高三數(shù)學(xué)概率訓(xùn)練題
編輯:
逍遙路
關(guān)鍵詞:
高中數(shù)學(xué)
來(lái)源:
高中學(xué)習(xí)網(wǎng)
章末綜合測(cè)(10)概率
一、選擇題:本大題共12小題,每小題5分,共60分.
1.從裝有5只紅球,5只白球的袋中任意取出3只球,有事件:
①“取出2只紅球和1只白球”與“取出1只紅球和2只白球”;
②“取出2只紅球和1只白球”與“取出3只紅球”;
③“取出3只紅球”與“取出3只球中至少有1只白球”;
④“取出3只紅球”與“取出3只白球”.
其中是對(duì)立事件的有( )
A.①② B.②③
C.③④ D.③
D解析:從袋中任取3只球,可能取到的情況有:“3只紅球”,“2只紅球1只白球”,“1只紅球,2只白球”,“3只白球”,由此可知①、②、④中的兩個(gè)事件都不是對(duì)立事件.對(duì)于③,“取出3只球中至少有一只白球”包含“2只紅球1只白球”,“1只紅球2只白球”,“3只白球”三種情況,與“取出3只紅球”是對(duì)立事件.
2.取一根長(zhǎng)度為4 m的繩子,拉直后在任意位置剪斷,那么剪得的兩段都不少于1 m的概率是( )
A.14 B.13
C.12 D.23
C解析:把繩子4等分,當(dāng)剪斷點(diǎn)位于中間兩部分時(shí),兩段繩子都不少于1 m,故所求概率為P=24=12.
3.甲、乙兩人下棋,甲獲勝的概率為30%,甲不輸?shù)母怕蕿?0%,則甲 、乙兩人下一盤棋,你認(rèn)為最為可能出現(xiàn)的情況是( )
A.甲獲勝 B.乙獲勝
C.甲、乙下成和棋 D.無(wú)法得出
C解析:兩人下成和棋的概率為50%,乙勝的概率為20%,故甲、乙兩人下一盤棋,最有可能出現(xiàn)的情況是 下成和棋.
4.如圖所示,墻上掛有邊長(zhǎng)為a的正方形木板,它的四個(gè)角的空白部分都是以正方形的頂點(diǎn)為圓心,半徑為a2的扇形,某人向此板投鏢,假設(shè)每次都能擊中木板,且擊中木板上每個(gè)點(diǎn)的可能性都一樣,則它擊中陰影部分的概率是( )
A.1-π4 B.π4
C.1-π8 D.與a的取值有關(guān)
A 解析:幾何概型,P=a2-πa22a2=1-π4,故選A.
5.從1,2,3,4這四個(gè)數(shù)中,不重復(fù)地任意取兩個(gè)種,兩個(gè)數(shù)一奇一偶的概率是( )
A.16 B.25
C.13 D.23
D 解析:基本事件總數(shù)為6,兩個(gè)數(shù)一奇一偶的情況有4種,故所求概率P=46=23.
6.從含有4個(gè)元素的集合的所有子集中任取一個(gè),所取的子集是含有2個(gè)元素的集合的概率是( )
A.310 B.112
C.4564 D.38
D解析:4個(gè)元素的集合共16個(gè)子集,其中含有兩個(gè)元素的子集有6個(gè),故所求概
率為P=616=38.
7 .某班準(zhǔn)備到郊外野營(yíng),為此向商店定了帳篷,如果下雨與不下雨是等可能的,能否準(zhǔn)時(shí)收到帳篷也是等可能的,只要帳篷如期運(yùn)到,他們就不會(huì)淋雨,則下列說(shuō)法正確的是( )
A.一定不會(huì)淋雨 B.淋雨的可能性為34
C.淋雨的可能性為12 D.淋雨的可能性為14
D解析:基本事件有“下雨帳篷到”、“不下雨帳篷到”、“下雨帳篷未到”、“不下
雨帳篷未到”4種情況,而只有“下雨帳篷未到”時(shí)會(huì)淋雨,故淋雨的可能性為14.
8.將一顆骰子連續(xù)拋擲三次,它落地時(shí)向上的點(diǎn)數(shù)依次成等差數(shù)列的概率為( )
A.19 B.112
C.115 D.118
D解析:基本事件總數(shù)為216,點(diǎn)數(shù)構(gòu)成等差數(shù)列包含的基本事件有(1,2,3),(1,3,5),(2,3,4),(2,4,6),(3,2,1),(3,4,5),(4,3,2),(4,5,6),(5,4,3),(5,3,1),(6,5,4),(6,4,2)共12個(gè),故求概率為P=12216=118.
9.設(shè)集合A={1,2},B={1,2,3},分別從集合A和集合B中隨機(jī)取一個(gè)數(shù)a和b,確定平面上的一個(gè)點(diǎn)P(a,b),記“點(diǎn)P(a,b)落在直線x+y=n上”為事件Cn(2≤n≤5,n∈N),若事件Cn的概率最大,則N的所有可能值為( )
A.3 B.4
C.2和5 D.3和4
D解析:點(diǎn)P(a,b)的個(gè)數(shù)共有2×3=6個(gè),落在直線x+y=2上的概率P(C2)=16;落在直線x+y=3上的概率P(C3)=26;落在直線x+y=4上的概率P(C4)=26;落在直線x+y=5上的概率P(C5)=16,故選D.
10.連擲兩次骰子得到的點(diǎn)數(shù)分別為m,n,記向量a=(m,n)與向量b=(1,-1)的夾角為θ,則θ∈0,π2的概率是( )
A.512 B.12
C.712 D.56
C 解析:基本事件總數(shù)為36,由cosθ=a•ba•b≥0得a•b≥0,即m-n≥0,包含的基本事件有(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(4,4),(5,1),(5,2),(5,3),(5,4),(5,5),(6,1),(6,2),(6,3),(6,4)
高二
,(6,5),(6,6)共21個(gè),故所求概率為P=2136=712.
11.在一張打方格的紙上投一枚直徑為1的硬幣,方格的邊長(zhǎng)(方格邊長(zhǎng)設(shè)為a)要多少才能使得硬幣與方格線不相交的概率小于1% ( )
A.a(chǎn)>910 B.a(chǎn)>109
C.1<a<109 D.0<a<910
C解析:硬幣與方格線不相交,則a>1時(shí),才可能發(fā)生,在每一個(gè)方格內(nèi),當(dāng)硬幣的圓心落在邊長(zhǎng)為a-1,中心與方格的中心重合的小正方形內(nèi)時(shí),硬幣與方格線不相交,故硬幣與方格線不相交的概率P=(a-1)2a2.,由(a-1)2a2<1%,得1<a<109.
12.集合A={(x,y)x-y-1≤0,x+y-1≥0,x∈N},集合B={(x,y)y≤-x+5,x∈N},先后擲兩顆骰子,設(shè)擲第一顆骰子得點(diǎn)數(shù)記作a,擲第二顆骰子得數(shù)記作b,則(a,b)∈A∩B的概率等于 ( )
A.14 B.29
C.736 D.536
B解析:根據(jù)二元一次不等式組表示的平面區(qū)域,可知A∩B對(duì)應(yīng)如圖所示的陰影部分的區(qū)域中的整數(shù)點(diǎn).其中整數(shù)點(diǎn)有(0,1),(0,2),(0,3),(0,4),(0,5),(1,0),(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,2)共14個(gè).現(xiàn)先后拋擲2顆骰子,所得點(diǎn)數(shù)分別有6種,共會(huì)出現(xiàn)36種結(jié)果,其中落入陰影區(qū)域內(nèi)的有8種,即(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,2).所以滿足(a,b)∈A∩B的概率為836=29,
二、填空題:本大題共4個(gè)小題,每小題5分,共20分.
13.若實(shí)數(shù)x,y滿足x≤2,y≤1,則任取其中x,y,使x2+y2≤1的概率為__________.
解析:點(diǎn)(x,y)在由直線x=±2和y=±1圍成的矩形上或其內(nèi)部,使x2+y2≤1的點(diǎn)(x,
y)在以原點(diǎn)為圓心,以1為半徑的圓上或其內(nèi)部,故所求概率為P=π4×2=π8.
答案:π8
14.從所有三位二進(jìn)制數(shù)中隨機(jī)抽取一個(gè)數(shù),則這個(gè)數(shù)化為十進(jìn)制數(shù)后比5大的概率是
________.
解析:三位二進(jìn)制數(shù)共有4個(gè),分別111(2), 110(2),101(2),100(2),其中111(2)與110(2)化為十
進(jìn)制數(shù)后比5大,故所求概率為P=24=12.
答案:12
15.把一顆骰子投擲兩次,第一次出現(xiàn)的點(diǎn)數(shù)記為m,第二次出現(xiàn)的點(diǎn)數(shù)記為n,方程
組mx+ny=3,2x+3y=2,只有一組解的概率是__________.
1718 解析:由題意,當(dāng)m2≠n3,即3m≠2n時(shí),方程組只有一解.基本事件總數(shù)為36,
滿足3m=2n的基本事件有(2,3),(4,6)共兩個(gè),故滿足3m≠2n的基本事件數(shù)為34個(gè),
故所求概率為P=3436=1718.
16.在圓(x-2)2+(y-2)2=8內(nèi)有一平面區(qū)域E:x-4≤0,y≥0,mx-y≤0(m≥0),點(diǎn)P是圓內(nèi)的
任意一點(diǎn),而且出現(xiàn)任何一個(gè)點(diǎn)是等可能的.若使點(diǎn)P落在平面區(qū)域E內(nèi)的概率最
大,則m=__________.
0 解析:如圖所示,當(dāng)m=0時(shí),平面區(qū)域E的面積最大,
則點(diǎn)P落在平面區(qū)域E內(nèi)的概率最大.
三、解答題:本大題共6小題,共70分.
17.(10分)某公司在過(guò)去幾年內(nèi)使用某種型號(hào)的燈管1 000支,該公司對(duì)這些燈管的使用壽 命(單位:小時(shí))進(jìn)行了統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如下表所示
分組 [500,900) [900,1 100) [1 1001 300) [1 300,1 500) [1 500,1 700) [1 700,1 900) [1 900,+∞)
頻數(shù) 48 121 208 223 193 165 42
頻率[]
(1)將各組的頻率填入表中;
(2)根據(jù)上述統(tǒng)計(jì)結(jié)果,計(jì)算燈管使用壽命不足1 500小時(shí)的頻率;
(3)該公司某辦公室新安裝了這種型號(hào)的燈管15支,若將上述頻率作為概率,估計(jì)經(jīng)過(guò)1 500小時(shí)約需換幾支燈管.
解析:
分組 [500,900) [900,1 100) [1 1001 300) [1 300,1 500) [1 500,1 700) [1 700,1 900) [1 900,+∞)
頻數(shù) 48 121 208 223 193 165 42
頻率 0.048 0.121 0.208 0.223 0.193 0.165 0.042
(2)由(1)可得0.048+0.121+0.208+0.223=0.6,
所以,燈管使用壽命不足1 500小時(shí)的頻率是0.6.
(3)由(2)只,燈管使用壽命不足1 500小時(shí)的概率為0.6.
15×0.6=9,故經(jīng)過(guò)1 500小時(shí)約需換9支燈管.
18.(12分)袋中有大小、形狀相同的紅、黑球各一個(gè),現(xiàn)有放回地隨機(jī)摸取3次,每次摸 取一個(gè)球.
(1)一共有多少種不同的結(jié)果?請(qǐng)列出所有可能的結(jié)果;
(2)若摸到紅球時(shí)得2分,摸到黑球時(shí)得1分,求3次摸球所得總分為5的概率.
解析:(1)一共有8種不同的結(jié)果,列舉如下:
(紅,紅,紅)、(紅,紅,黑)、(紅,黑,紅)、(紅,黑,黑)、
(黑、紅,紅)、(黑,紅,黑)、(黑,黑,紅)、(黑、黑、黑).
(2)記“3次摸球所得總分為5”為事件A,
事件A包含的基本事件為:
(紅,紅,黑)、(紅,黑,紅)、(黑,紅,紅).
事件A包含的基本事件數(shù)為3.
由(1)可知,基本事件總數(shù)為8,
所以事件A的概率為P(A)=38.
19.(12分)將一顆質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現(xiàn)的點(diǎn)數(shù)為a,第二次出現(xiàn)的點(diǎn)數(shù)為b.設(shè)復(fù)數(shù)z=a+bi.
(1)求事件“z-3i為實(shí)數(shù)”的概率;
(2)求事件“復(fù)數(shù)z在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)(a,b)滿足(a-2)2+b2≤9”的概率.
解析:(1)z-3i為實(shí)數(shù),
即a+bi-3i=a+(b-3)i為實(shí)數(shù),∴b=3.
又b可取1,2,3,4,5,6,故出現(xiàn)b=3的概率為16.
即事件“z-3i為實(shí)數(shù)”的概率為16.
(2)由已知,b的值只能取1,2,3.
當(dāng)b=1時(shí),(a-2)2≤8,即a可取1,2,3,4;
當(dāng)b=2時(shí),(a-2)2≤5,即a可取1,2,3,4;
當(dāng)b=3時(shí),(a-2)2≤0,即a可取2.
綜上可知,共有9種情況可使事件成立.
又a,b的取值情況共有36種,
所以事件“點(diǎn)(a,b)滿足(a-2 )2+b2≤9”的概率為14.
20.(12分)汶川地震發(fā)生后,某市根據(jù)上級(jí)要求,要從本市人民醫(yī)院報(bào)名參加救援的護(hù)理專家、外科專家、治療專家8名志愿者中,各抽調(diào)1名專家組成一個(gè)醫(yī)療小組與省專家組一起赴汶川進(jìn)行醫(yī)療求助,其中A1,A2,A3是護(hù)理專家,B1,B2,B3是外科專家,C1,C2是治療專家.
(1)求A1恰被選中的概率;
(2)求B1和C1不全被選中的概率.
解析:(1)從8名志愿者中選出護(hù)理專家、外科專家、心理治療專家各1名,其一切可能的結(jié)果為:
(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2).共有18個(gè)基本事件.
用M表示“A1恰被選中 ”這一事件,則
M包括(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2).共有6個(gè)基本事件.
所以P(M)=618=13.
(2)用N表示“B1和C1不全被選中”這一事件,則 其對(duì)立事件N表示“B1和C1全被選中”這一事件,
由N包括(A1,B1,C1),(A2,B1,C1),(A3,B1,C1),共有3個(gè)基本事件,
所以P(N)=318=16,
由對(duì)立事件的概率公式得P(N)=1-P(N)=1-16=56.
21.(12分)設(shè)關(guān)于x的一元二次方程x2+2ax+b2=0.
(1)若a是從-4,-3,-2,-1四個(gè)數(shù)中任取的一個(gè)數(shù),b是從1,2,3三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率;
(2)若a是從區(qū)間[-4,-1]任取的一個(gè)數(shù),b是從區(qū)間[1,3]任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
解析:設(shè)事件A為“方程x2+2ax+b2=0有實(shí)根”.
當(dāng)a<0,b>0時(shí),方程x2+2ax+b2=0有實(shí)根的充要條件為a+b≤0.
(1)基本事件共12個(gè):(-4,1),(-4,2),(-4,3),
(-3,1),(-3,2),(-3,3),(-2,1),(-2,2),(-2,3),(-1,1),(-1,2),(-1,3).
其中第一個(gè)數(shù)表示a的取值,第二個(gè)數(shù)表示b的取值.事件A中包含9個(gè)基本事件,事件A發(fā)生的概率為
P(A)=912=34.
(2)試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)?br>{(a,b)-4≤a≤-1,1≤b≤3},構(gòu)成事件A的區(qū)域?yàn)閧(a,b)-4≤a≤-1,1≤b≤3,a+b≤0},
所求概率為這兩區(qū)域面積的比.
所以所求的概率P=3×2-12×223×2=23.
22.(12分)某單位要在甲、乙、丙、丁4人中安排2人分別擔(dān)任周六、周日的值班任務(wù)(每人被安排是等可能的,每天只安排一人) .
(1)共有多少種安排?
(2)其中甲、乙兩人都被安排的概率是多少?
(3)甲、乙兩人中至少有一人被安排的概率是多少?
解析:(1)安排情況如下:
甲乙,甲丙,甲丁,乙甲,乙丙,乙丁,丙甲,丙乙,丙丁,丁甲,丁乙,丁丙.故共有12種安排方法.
(2)甲、乙兩人都被安排的情況包括:“甲乙”,“乙甲”兩種,故甲、乙兩人都被安排(記為事件A)的概率為
P(A)=212=16.
(3)方法一:“甲、乙兩人中至少有一人被安排”與“甲、乙兩人都不被安排”這兩個(gè)事件是對(duì)立事件,∵甲、乙兩人都不被安排的情交包括:“丙丁”,“丁丙”兩種,則“甲、乙兩人都不被安排的概率為212=16”.
∴甲、乙兩人中至少有一人被安排(記為事件B)的概率P(B)=1-16=56.
方法二:甲、乙兩人中至少有一人被安排的情況包括:“甲乙,甲丙,甲丁,乙甲,乙丙,乙丁,丙甲,丙乙,丁甲,丁乙”共10種,∴甲、乙兩人中至少有一人被安排(記為事件B)的概率P(B)=1012=56.
本文來(lái)自:逍遙右腦記憶 http://www.portlandfoamroofing.com/gaozhong/35931.html
相關(guān)閱讀:
幾何的三大問題
上一篇:
如何應(yīng)對(duì)高考數(shù)學(xué)難題?
下一篇:
數(shù)列的基本概念與等差數(shù)列
相關(guān)主題
幾何的三大問題
集合的基本運(yùn)算
高三數(shù)學(xué)教案 演繹推理
數(shù)學(xué)考試解題四項(xiàng)注意
高一數(shù)學(xué)怎么學(xué)
等比數(shù)列、數(shù)列求和
高中代數(shù)-三角函數(shù)
高三數(shù)學(xué)教案 平面向量的解題技巧
高中數(shù)學(xué)成績(jī)差的原因及解決方法
怎樣做數(shù)學(xué)筆記
相關(guān)推薦
推薦閱讀
淺談如何學(xué)好立體幾何
立體幾何在歷年的高考中有兩到三道小題,必有一道大題。雖然分值比重不是特別大,但是起著……
理發(fā)師悖論
M:著名的理發(fā)師悖論是伯特納德羅素提出的。一個(gè)理發(fā)師的招牌上寫著: 告示:城里所有不自……
文科生備考經(jīng)驗(yàn):掌握節(jié)奏備戰(zhàn)高考
關(guān)于的,我覺得掌握節(jié)奏是很重要的,可能大家以前從沒聽到過(guò)這樣的說(shuō)法,這其實(shí)是我三年感……
初學(xué)不等式者“鑒”
同學(xué)們初學(xué)不等式,尤其在利用不等式的性質(zhì)解題時(shí),一定要注意不等式成立的前提條件,否則……
每天“過(guò)電影”高考最后兩周沖刺數(shù)學(xué)如何
還有十余天,寒窗苦讀十幾年的們就要邁入(微博)考場(chǎng)了,這是人生中的一次重大考驗(yàn)。在這最……
相關(guān)閱讀
高考文科數(shù)學(xué)如何拿高分
《3.1 兩角和與差的正弦、余弦和正切公式
橢圓的方程
高三數(shù)學(xué)成績(jī)低的成因與提分方法
復(fù)習(xí)直線和圓的方程
高中數(shù)學(xué)加分的五大技巧
如何提高解數(shù)學(xué)題的速度
高三怎么學(xué)數(shù)學(xué):分化難點(diǎn)重在掌握運(yùn)用
觀察與認(rèn)識(shí)
等差數(shù)列的前n項(xiàng)和訓(xùn)練題
右腦記憶論壇
|
快速記憶法
|
記憶力培訓(xùn)
|
速讀培訓(xùn)
|
速讀軟件
Copyright(C) 2006-2014
逍遙右腦
All Rights Reserved