高中數(shù)學(xué)數(shù)列學(xué)習(xí)攻略

編輯: 逍遙路 關(guān)鍵詞: 高中數(shù)學(xué) 來源: 高中學(xué)習(xí)網(wǎng)


近幾年來,高考關(guān)于數(shù)列方面的命題主要有以下三個(gè)方面:

(1)數(shù)列本身的有關(guān)知識,其中有等差數(shù)列與等比數(shù)列的概念、性質(zhì)、通項(xiàng)公式及求和公式。

(2)數(shù)列與其它知識的結(jié)合,其中有數(shù)列與函數(shù)、方程、不等式、三角、幾何的結(jié)合。

(3)數(shù)列的應(yīng)用問題,其中主要是以增長率問題為主。

試題的難度有三個(gè)層次,小題多以基礎(chǔ)題為主,解答題多以基礎(chǔ)題和中檔題為主,只有個(gè)別地方用數(shù)列與幾何的綜合與函數(shù)、不等式的綜合作為最后一題,難度較大。

接下來為大家介紹下高中數(shù)列解題中,經(jīng)常會用到的幾種方法,大家可以按照這個(gè)解題思路來回答數(shù)列相關(guān)的問題,掌握了這幾點(diǎn)并融會貫通,你會發(fā)現(xiàn),數(shù)列其實(shí)并不難。

(1)函數(shù)的思想方法

數(shù)列本身就是一個(gè)特殊的函數(shù),而且是離散的函數(shù),因此在解題過程中,尤其在遇到等差數(shù)列與等比數(shù)列這兩類特殊的數(shù)列時(shí),可以將它們看成一個(gè)函數(shù),進(jìn)而運(yùn)用函數(shù)的性質(zhì)和特點(diǎn)來解決問題。

(2)方程的思想方法

數(shù)列這一章涉及了多個(gè)關(guān)于首項(xiàng)、末項(xiàng)、項(xiàng)數(shù)、公差、公比、第n項(xiàng)和前n項(xiàng)和這些量的數(shù)學(xué)公式,而公式本身就是一個(gè)等式,因此,在求這些數(shù)學(xué)量的過程中,可將它們看成相應(yīng)的已知量和未知數(shù),通過公式建立關(guān)于求未知量的方程,可以使解題變得清晰、明了,而且簡化了解題過程。

(3)不完全歸納法

不完全歸納法不但可以培養(yǎng)學(xué)生的數(shù)學(xué)直觀,而且可以幫助學(xué)生有效的解決問題,在等差數(shù)列以及等比數(shù)列通項(xiàng)公式推導(dǎo)的過程就用到了不完全歸納法。

(4)倒序相加法

等差數(shù)列前n項(xiàng)和公式的推導(dǎo)過程中,就根據(jù)等差數(shù)列的特點(diǎn),很好的應(yīng)用了倒序相加法,而且在這一章的很多問題都直接或間接地用到了這種方法。

(5)錯(cuò)位相減法

錯(cuò)位相減法是另一類數(shù)列求和的方法,它主要應(yīng)用于求和的項(xiàng)之間通過一定的變形可以相互轉(zhuǎn)化,并且是多個(gè)數(shù)求和的問題。等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)就用到了這種思想方法。


本文來自:逍遙右腦記憶 http://www.portlandfoamroofing.com/gaozhong/847479.html

相關(guān)閱讀:信息技術(shù)與數(shù)學(xué)課堂整合