【—不等式與不等式組習(xí)題及解法】同學(xué)們,了解不等式才能更好的解答不等式組 初中學(xué)習(xí)方法,今天老師就為大家介紹一下不等式與不等式組習(xí)題及解法。多看看,就能找到解題的思路了。詳情請
不等式與不等式組的有一下這些:
1.判斷不等式是否成立:關(guān)鍵是分析判定不等號的變化,變化的依據(jù)是不等式的性質(zhì),特別注意的是,不等式兩邊都乘以(或除以)同一個負(fù)數(shù)時,要改變不等號方向;反之,若不等式的不等號方向發(fā)生改變,則說明不等式兩邊同乘以(或除以)了一個負(fù)數(shù)。因此,在判斷不等式成立與否或由不等式變形求某些字母的范圍時,要認(rèn)真觀察不等式的形式與不等號方向。
2.解一元一次不等式(組):解一元一次不等式的步驟與解一元一次方程的步驟大致相同,應(yīng)注意的是,不等式兩邊所乘以(或除以)的數(shù)的正負(fù),并根據(jù)不同情況靈活運(yùn)用其性質(zhì)。一元一次不等式(組)常與分式、根式、一元二次方程、函數(shù)等知識相聯(lián)系,解決綜合性問題。
3.求不等式(組)的特殊解:不等式(組)的解往往是有無數(shù)多個,但其特殊解在某些范圍內(nèi)是有限的,如整數(shù)解、非負(fù)整數(shù)解,要求這些特殊解,首先是確定不等式(組)的解集, 然后再找到相應(yīng)的答案。注意應(yīng)用數(shù)形結(jié)合思想。
4.列不等式(組)解應(yīng)用題:注意分析題目中的不等量關(guān)系,考查的熱點(diǎn)是與實(shí)際生活密切相聯(lián)的不等式(組)應(yīng)用題。
右腦記憶論壇 | 快速記憶法 | 記憶力培訓(xùn) | 速讀培訓(xùn) | 速讀軟件 |
Copyright(C) 2006-2014 逍遙右腦 All Rights Reserved