逍遙右腦記憶網(wǎng)-免費提供各種記憶力訓練學習方法!
超右腦
|
催眠術
|
潛能開發(fā)
|
影像閱讀
|
右腦開發(fā)訓練
|
網(wǎng)站地圖
記憶方法
右腦開發(fā)
快速閱讀
思維導圖
學習方法
學習計劃
作文大全
早期教育
勵志名言
右腦記憶
記憶法
|
記憶宮殿
|
記憶力訓練
記憶術
|
最強大腦
|
右腦記憶法
學習方法
高中學習方法
|
高考
|
小學資源
|
單詞記憶
初中學習方法
|
中考
|
教案設計
|
試題中心
潛能成功
吸引力法則
|
成功學
|
九型人格
注意力訓練
|
潛意識
|
思維模式
初中學習方法
初中語文
初中英語
初中數(shù)學
初中物理
初中化學
初中生物
初中政治
初中歷史
初中地理
中考學習網(wǎng)
初一學習方法
初一語文
初一數(shù)學
初一英語
初一生物
初一政治
初一歷史
初一地理
初二物理
初一學習
初中教案
初二學習方法
初二語文
初二數(shù)學
初二英語
初二生物
初二政治
初二歷史
初二地理
初三物理
初二學習
初中試題
初三學習方法
初三語文
初三數(shù)學
初三英語
初三生物
初三政治
初三歷史
初三地理
初三化學
初三學習
初中作文
逍遙右腦記憶
>
教案設計
>
數(shù)學
>
八年級
>
整式的乘除與因式分解全單元教案
編輯:
逍遙路
關鍵詞:
八年級
來源:
高中學習網(wǎng)
j.Co M
第十五章 整式的乘除與因式分解
§15.1.1 整式
教學目標
1.單項式、單項式的定義.
2.多項式、多項式的次數(shù).
3、理解整式概念.
教學重點
單項式及多項式的有關概念.
教學難點
單項式及多項式的有關概念.
教學過程
Ⅰ.提出問題,創(chuàng)設情境
在七年級,我們已經(jīng)學習了用字母可以表示數(shù),思考下列問題
1.要表示△ABC的周長需要什么條件?要表示它的面積呢?
2.小王用七小時行駛了Skm的路程,請問他的平均速度是多少?
結論:
1、要表示△ABC的周長,需要知道它的各邊邊長.要表示△ABC的面積需要知道一條邊長和這條邊上的高.如果設BC=a,AC=b,AB=c.AB邊上的高為h,那么△ABC的周長可以表示為a+b+c;△ABC的面積可以表示為 ?c?h.
2.小王的平均速度是 .
問題:這些式子有什么特征呢?
(1)有數(shù)字、有表示數(shù)字的字母.
(2)數(shù)字與字母、字母與字母之間還有運算符號連接.
歸納:用基本的運算符號(運算包括加、減、乘、除、乘方與開方)把數(shù)和表示數(shù)的字母連接起來的式子叫做代數(shù)式.
判斷上面得到的三個式子:a+b+c、 ch、 是不是代數(shù)式?(是)
代數(shù)式可以簡明地表示數(shù)量和數(shù)量的關系.今天我們就來學習和代數(shù)式有關的整式.
Ⅱ.明確和鞏固整式有關概念
(出示投影)
結論:(1)正方形的周長:4x.
(2)汽車走過的路程:vt.
(3)正方體有六個面,每個面都是正方形,這六個正方形全等,所以它的表面積為6a2;正方體的體積為長×寬×高,即a3.
(4)n的相反數(shù)是-n.
分析這四個數(shù)的特征.
它們符合代數(shù)式的定義.這五個式子都是數(shù)與字母或字母與字母的積,而a+b+c、 ch、 中還有和與商的運算符號.還可以發(fā)現(xiàn)這五個代數(shù)式中字母指數(shù)各不相同,字母的個數(shù)也不盡相同.
請同學們閱讀課本P160~P161單項式有關概念.
根據(jù)這些定義判斷4x、vt、6a2、a3、-n、a+b+c、 ch、 這些代數(shù)式中,哪些是單項式?是單項式的,寫出它的系數(shù)和次數(shù).
結論:4x、vt、6a2、a3、-n、 ch是單項式.它們的系數(shù)分別是4、1、6、1、-1、 .它們的次數(shù)分別是1、2、2、3、1、2.所以4x、-n都是一次單項式;vt、6a2、 ch都是二次單項式;a3是三次單項式.
問題:vt中v和t的指數(shù)都是1,它不是一次單項式嗎?
結論:不是.根據(jù)定義,單項式vt中含有兩個字母,所以它的次數(shù)應該是這兩個字母的指數(shù)的和,而不是單個字母的指數(shù),所以vt是二次單項式而不是一次單項式.
生活中不僅僅有單項式,像a+b+c,它不是單項式,和單項式有什么聯(lián)系呢?
寫出下列式子(出示投影)
結論:(1)t-5.(2)3x+5y+2z.
(3)三角尺的面積應是直角三角形的面積減去圓的面積,即 ab-3.12r2.
(4)建筑面積等于四個矩形的面積之和.而右邊兩個已知矩形面積分別為3×2、4×3,所以它們的面積和是18.于是得這所住宅的建筑面積是x2+2x+18.
我們可以觀察下列代數(shù)式:
a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18.發(fā)現(xiàn)它們都是由單項式的和組成的式子.是多個單項式的和,能不能叫多項式?
這樣推理合情合理.請看投影,熟悉下列概念.
根據(jù)定義,我們不難得出a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18都是多項式.請分別指出它們的項和次數(shù).
a+b+c的項分別是a、b、c.
t-5的項分別是t、-5,其中-5是常數(shù)項.
3x+5y+2z的項分別是3x、5y、2z.
ab-3.12r2的項分別是 ab、-3.12r2.
x2+2x+18的項分別是x2、2x、18. 找多項式的次數(shù)應抓住兩條,一是找準每個項的次數(shù),二是取每個項次數(shù)的最大值.根據(jù)這兩條很容易得到這五個多項式中前三個是一次多項式,后兩個是二次多項式.
這節(jié)課,通過探究我們得到單項式和多項式的有關概念,它們可以反映變化的世界.同時,我們也到符號的魅力所在.我們把單項式與多項式統(tǒng)稱為整式.
Ⅲ.隨堂練習
1.課本P162練習
Ⅳ.課時小結
通過探究,我們了解了整式的概念.理解并掌握單項式、多項式的有關概念是本節(jié)的重點,特別是它們的次數(shù).在現(xiàn)實情景中進一步理解了用字母表示數(shù)的意義,發(fā)展符號感.
Ⅴ.課后作業(yè)
1.課本P165~P166習題15.1─1、5、8、9題.
2.預習“整式的加減”.
課后作業(yè):《課堂感悟與探究》
§15.1.2 整式的加減(1)
教學目的:
1、解字母表示數(shù)量關系的過程,發(fā)展符號感。
2、會進行整式加減的運算,并能說明其中的算理,發(fā)展有條理的思考及語言表達能力。
教學重點:
會進行整式加減的運算,并能說明其中的算理。
教學難點:
正確地去括號、合并同類項,及符號的正確處理。
教學過程:
一、課前練習:
1、填空:整式包括 和
2、單項式 的系數(shù)是 、次數(shù)是
3、多項式 是 次 項式,其中二次項
系數(shù)是 一次項是 ,常數(shù)項是
4、下列各式,是同類項的一組是( )
(A) 與 (B) 與 (C) 與
5、去括號后合并同類項:
二、探索練習:
1、如果用a 、b分別表示一個兩位數(shù)的十位數(shù)字和個位數(shù)字,那么這個兩位數(shù)可以表示為 交換這個兩位數(shù)的十位數(shù)字和個位數(shù)字后得到的兩位數(shù)為
這兩個兩位數(shù)的和為
2、如果用a 、b、c分別表示一個三位數(shù)的百位數(shù)字、十位數(shù)字和個位數(shù)字,那么這個三位數(shù)可以表示為 交換這個三位數(shù)的百位數(shù)字和個位數(shù)字后得到的三位數(shù)為
這兩個三位數(shù)的差為
●議一議:在上面的兩個問題中,分別涉及到了整式的什么運算?
說說你是如何運算的?
▲整式的加減運算實質(zhì)就是
運算的結果是一個多項式或單項式。
三、鞏固練習:
1、填空:(1) 與 的差是
(2)、單項式 、 、 、 的和為
(3)如圖所示,下面為由棋子所組成的三角形,
一個三角形需六個棋子,三個三角形需
( )個棋子,n個三角形需 個棋子
2、計算:
(1)
(2)
(3)
3、(1)求 與 的和
(2)求 與 的差
4、先化簡,再求值: 其中
四、提高練習:
1、若A是五次多項式,B是三次多項式,則A+B一定是
(A)五次整式 (B)八次多項式
(C)三次多項式 (D)次數(shù)不能確定
2、足球比賽中,如果勝一場記3a分,平一場記a分,負一場
記0分,那么某隊在比賽勝5場,平3場,負2場,共積多
少分?
3、一個兩位數(shù)與把它的數(shù)字對調(diào)所成的數(shù)的和,一定能被14
整除,請證明這個結論。
4、如果關于字母x的二次多項式 的值與x的取值無關,
試求m、n的值。
五、小結:整式的加減運算實質(zhì)就是去括號和合并同類項。
六、作業(yè):第8頁習題1、2、3
15.1.2整式的加減(2)
教學目標:1.會進行整式加減的運算,并能說明其中的算理,發(fā)展有條理的思考及其語言表達能力。
2.通過探索規(guī)律的問題,進一步符號表示的意義,發(fā)展符號感,發(fā)展推理能力。
教學重點:整式加減的運算。
教學難點:探索規(guī)律的猜想。
教學方法:嘗試練習法,討論法,歸納法。
教學用具:投影儀
教學過程:
I探索練習:
擺第1個“小屋子”需要5枚棋子,擺第2個需要 枚棋子,擺第3個需要 枚棋子。按照這樣的方式繼續(xù)擺下去。
(1)擺第10個這樣的“小屋子”需要 枚棋子
(2)擺第n個這樣的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解決這個問題嗎?小組討論。
二、例題講解:
三、鞏固練習:
1、計算:
(1)(14x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)
(3)x-(1-2x+x2)+(-1-x2) (4)(8xy-3x2)-5xy-2(3xy-2x2)
2、已知:A=x3-x2-1,B=x2-2,計算:(1)B-A (2)A-3B
3、列方程解應用題:三角形三個內(nèi)角的和等于180°,如果三角形中第一個角等于第二個角的3倍,而第三個角比第二個角大15°,那么
(1)第一個角是多少度?
(2)其他兩個角各是多少度?
四、提高練習:
1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,問C是什么樣的多項式?
2、設A=2x2-3xy+y2-x+2y,B=4x2-6xy+2y2-3x-y,若│x-2a│+
(y+3)2=0,且B-2A=a,求A的值。
3、已知有理數(shù)a、b、c在數(shù)軸上(0為數(shù)軸原點)的對應點如圖:
試化簡:│a│-│a+b│+│c-a│+│b+c│
小 結:要善于在圖形變化中發(fā)現(xiàn)規(guī)律,能熟練的對整式加減進行運算。
作 業(yè):課本P14習題1.3:1(2)、(3)、(6),2。
《課堂感悟與探究》
本文來自:逍遙右腦記憶 http://www.portlandfoamroofing.com/chuer/59294.html
相關閱讀:
因式分解的應用
上一篇:
平方差公式
下一篇:
(北師大版)第一章一元一次不等式和一元一次不等式組復習學案
相關主題
因式分解的應用
分式
分式的乘除
整式乘法與因式分解
整式的乘法
分式的概念、性質(zhì)及運算
整式的乘除與因式分解
初二數(shù)學上冊第十五章整式的乘除與因式分解教學案
相關推薦
推薦閱讀
蘇科版八年級下9.1反比例函數(shù)教案
第九章 反比例函數(shù) 9.1 反比例函數(shù) 教學目標:1、理解反比例函數(shù)的概念,會求比例系數(shù)。 2……
北師大八年級數(shù)學下冊第三章分式復習學案
第三章 分式復習(二)(編號:復04) 一. 解分式方程的一般步驟是: 1、去分母。把分式方……
它們是怎樣變過來的
第三章 圖形的平移與旋轉(zhuǎn) 總課時:7課時 使用人: 備課時間:第四周 上課時間:第五周 第6……
它們是怎樣變過來的
第三 圖形的平移與旋轉(zhuǎn) 總時:7時 使用人: 備時間:第四周 上時間:第五周 第6時:它們是……
簡單的平移作圖2
總課時:7課時 使用人: 備課時間:第四周 上課時間:第五周 第3課時:簡單的平移作圖(2 ……
相關閱讀
應用題
初二數(shù)學第14章一次函數(shù)學案
平行四邊形的識別
探索勾股定理(第1課時)
矩形的性質(zhì)
八年級數(shù)學上冊11.3角的平分線的性質(zhì)學案
三角形內(nèi)角和定理的證明
從勾股定理談起
解二元一次方程組(2)教案
簡單的平移作圖2
右腦記憶論壇
|
快速記憶法
|
記憶力培訓
|
速讀培訓
|
速讀軟件
|
右腦圖卡
Copyright(C) 2006-2014
逍遙右腦
All Rights Reserved