廣西玉林市防城港市2013年中考數(shù)學(xué)試卷一、(共12小題,每小題3分,滿分36分)在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合要求。1.(3分)(2013•玉林)2的相反數(shù)是( 。 A.2B.?2C. D.
考點(diǎn):相反數(shù).分析:根據(jù)相反數(shù)的定義求解即可.解答:解:2的相反數(shù)為:?2.故選B.點(diǎn)評(píng):本題考查了相反數(shù)的知識(shí),屬于基礎(chǔ)題,掌握相反數(shù)的定義是解題的關(guān)鍵. 2.(3分)(2013•玉林)若∠α=30°,則∠α的補(bǔ)角是( 。 A.30°B.60°C.120°D.150°
考點(diǎn):余角和補(bǔ)角.專題:.分析:相加等于180°的兩角稱作互為補(bǔ)角,也作兩角互補(bǔ),即一個(gè)角是另一個(gè)角的補(bǔ)角.因而,求這個(gè)角的補(bǔ)角,就可以用180°減去這個(gè)角的度數(shù).解答:解:180°?30°=150°.故選D.點(diǎn)評(píng):本題主要是對(duì)補(bǔ)角概念的考查,是需要在學(xué)習(xí)中識(shí)記的內(nèi)容. 3.(3分)(2013•玉林)我國(guó)第一艘航母“遼寧艦”最大排水量為67500噸,用科學(xué)記數(shù)法表示這個(gè)數(shù)字是( 。 A.6.75×103噸B.67.5×103噸C.6.75×104噸D.6.75×105噸
考點(diǎn):科學(xué)記數(shù)法—表示較大的數(shù).分析:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤a<10,n為整數(shù).確定n的值是易錯(cuò)點(diǎn),由于67500有5位,所以可以確定n=5?1=4.解答:解:67 500=6.75×104.故選C.點(diǎn)評(píng):此題考查科學(xué)記數(shù)法表示較大的數(shù)的方法,準(zhǔn)確確定a與n值是關(guān)鍵. 4.(3分)(2013•玉林)直線c與a,b均相交,當(dāng)a∥b時(shí)(如圖),則( 。 A.∠1>∠2B.∠1<∠2C.∠1=∠2D.∠1+∠2=90°
考點(diǎn):平行線的性質(zhì)分析:根據(jù)平行線的性質(zhì):兩直線平行,內(nèi)錯(cuò)角相等可得答案.解答:解:∵a∥b,∴∠1=∠2,故選:C.點(diǎn)評(píng):此題主要考查了平行線的性質(zhì),關(guān)鍵是掌握兩直線平行,內(nèi)錯(cuò)角相等. 5.(3分)(2013•玉林)在數(shù)軸上表示不等式x +5≥1的解集,正確的是( 。 A. B. C. D.
考點(diǎn):在數(shù)軸上表示不等式的解集;解一元一次不等式.專題:分析:求出不等式的解集,表示在數(shù)軸上即可.解答:解:不等式x+5≥1,解得:x≥?4,表示在數(shù)軸上,如圖所示:故選B點(diǎn)評(píng):此題考查了在數(shù)軸上表示不等式的解集,把每個(gè)不等式的解集在數(shù)軸上表示出來(lái)(>,≥向右畫(huà);<,≤向左畫(huà)),數(shù)軸上的點(diǎn)把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個(gè)數(shù)一樣,那么這段就是不等式組的解集.有幾個(gè)就要幾個(gè).在表示解集時(shí)“≥”,“≤”要用實(shí)心圓點(diǎn)表示;“<”,“>”要用空心圓點(diǎn)表示. 6.(3分)(2013•玉林)已知一組從小到大的數(shù)據(jù):0,4,x,10的中位數(shù)是5,則x=( 。 A.5B.6C.7D.8
考點(diǎn):中位數(shù)分析:根據(jù)中位數(shù)是5,得出(4+x)÷2=5,求出x的值即可.解答:解:一組從小到大的數(shù)據(jù):0,4,x,10的中位數(shù)是5,則(4+x)÷2=5,x=6;故選B.點(diǎn)評(píng):此題考查了中位數(shù),中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,最中間的那個(gè)數(shù)(最中間兩個(gè)數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),是一道基礎(chǔ)題. 7.(3分)(2013•玉林)某幾何體的三視圖如圖所示,則組成該幾何體共用了( 。┬》綁K. A.12塊B.9塊C.7塊D.6塊
考點(diǎn):由三視圖判斷幾何體.分析:觀察該幾何體的三視圖發(fā)現(xiàn)該幾何體共有三層,第一層有三個(gè),第二層有兩個(gè),第三層也有兩個(gè),由此可以得到答案.解答:解:∵觀察該幾何體的三視圖發(fā)現(xiàn)該幾何體共有三層,第一層有三個(gè),第二層有兩個(gè),第三層也有兩個(gè),∴該幾何體共有3+2+2=7個(gè),故選C.點(diǎn)評(píng):本題考查了由三視圖判斷幾何體的知識(shí),解題的關(guān)鍵是會(huì)利用物體的三視圖判斷出該幾何體的形狀. 8.(3分)(2013•玉林)如圖是某手機(jī)店今年1?5月份音樂(lè)手機(jī)銷售額統(tǒng)計(jì)圖.根據(jù)圖中信息,可以判斷相鄰兩個(gè)月音樂(lè)手機(jī)銷售額變化最大的是( 。 A.1月至2月B.2月至3月 C.3月至4月D.4月至5月
考點(diǎn):折線統(tǒng)計(jì)圖. 分析:根據(jù)折線圖的數(shù)據(jù),分別求出相鄰兩個(gè)月的音樂(lè)手機(jī)銷售額的變化值,比較即可得解.解答:解:1月至2月,30?23=7萬(wàn)元,2月至3月,30?25=5萬(wàn)元,3月至4月,25?15=10萬(wàn)元,4月至5月,19?14=5萬(wàn)元,所以,相鄰兩個(gè)月中 ,用電量變化最大的是3月至4月.故選C.點(diǎn)評(píng):本題考查折線統(tǒng)計(jì)圖的運(yùn)用,折線統(tǒng)計(jì)圖表示的是事物的變化情況,根據(jù)圖中信息求出相鄰兩個(gè)月的音樂(lè)手機(jī)銷售額變化量是解題的關(guān)鍵. 9.(3分)(2013•玉林)方程 的解是( 。 A.x=2B.x=1C.x= D.x=?2
考點(diǎn):解分式方程.專題:計(jì)算題.分析:分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗(yàn)即可得到分式方程的解.解答:解:去分母得:x+1?3(x?1)=0,去括號(hào)得:x+1?3x+3=0,解得:x=2,經(jīng)檢驗(yàn)x=2是分式方程的解.故選A.點(diǎn)評(píng):此題考查了解分式方程,解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解.解分式方程一定注意要驗(yàn)根. 10.(3分)(2013•玉林)如圖,在給定的一張平行四邊形紙片上作一個(gè)菱形.甲、乙兩人的作法如下:甲:連接AC,作AC的垂直平分線N分別交AD,AC,BC于,O,N,連接AN,C,則四邊形ANC是菱形.乙:分別作∠A,∠B的平分線AE,BF,分別交BC,AD于E,F(xiàn),連接EF,則四邊形ABEF是菱形.根據(jù)兩人的作法可判斷( ) A.甲正確,乙錯(cuò)誤B.乙正確,甲錯(cuò)誤C.甲、乙均正確D.甲、乙均錯(cuò)誤
考點(diǎn):菱形的判定.分析:首先證明△AO≌△CON(ASA),可得O=NO,再根據(jù)對(duì)角線互相平分的四邊形是平行四邊形可判定判定四邊形ANC是平行四邊形,再由AC⊥N,可根據(jù)對(duì)角線互相垂直的四邊形是菱形判定出ANC是菱形;四邊形ABCD是平行四邊形,可根據(jù)角平分線的定義和平行線的定義,求得AB=AF,所以四邊形ABEF是菱形.解答: 解:甲的作法正確;∵四邊形 ABCD是平行四邊形,∴AD∥BC,∴∠DAC=∠ACN,∵N是AC的垂直平分線,∴AO=CO,在△AO和△CON中 ,∴△AO≌△CON(ASA),∴O=NO,∴四邊形ANC是平行四邊形,∵AC⊥N,∴四邊形ANC是菱形;乙的作法正確;∵AD∥BC,∴∠1=∠2,∠6=∠7,∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∴AB=AF,AB=BE,∴AF=BE∵AF∥BE,且AF=BE,∴四邊形ABEF是平行四邊形,∵AB=AF,∴平行四邊形ABEF是菱形;故選:C.點(diǎn)評(píng):此題主要考查了菱形形的判定,關(guān)鍵是掌握菱形的判定方法:①菱形定義:一組鄰邊相等的平行四邊形是菱形(平行四邊形+一組鄰邊相等=菱形);②四條邊都相等的四邊形是菱形.③對(duì)角線互相垂直的平行四邊形是菱形(或“對(duì)角線互相垂直平分的四邊形是菱形”). 11.(3分)(2013•玉林)一列數(shù)a1,a2,a3,…,其中a1= ,an= (n為不小于2的整數(shù)),則a100=( ) A. B.2C.?1D.?2
考點(diǎn):規(guī)律型:數(shù)字的變化類.專題:規(guī)律型.分析:根據(jù)表達(dá)式求出前幾個(gè)數(shù)不難發(fā)現(xiàn),每三個(gè)數(shù)為一個(gè)循環(huán)組依次循環(huán),用100除以3,根據(jù)商和余數(shù)的情況確定a100的值即可.解答:解:根據(jù)題意得,a2= =2,a3= =?1,a4= = ,a5= =2,…,依此類推,每三個(gè)數(shù)為一個(gè)循環(huán)組依次循環(huán),∵100÷3=33…1,∴a100是第34個(gè)循環(huán)組的第一個(gè)數(shù),與a1相同,即a100= .故選A.點(diǎn)評(píng):本題是對(duì)數(shù)字變化規(guī)律的考查,計(jì)算并觀察出每三個(gè)數(shù)為一個(gè)循環(huán)組依次循環(huán)是解題的關(guān)鍵. 12.(3分)(2013•玉林)均勻地向一個(gè)瓶子注水,最后把瓶子注滿.在注水過(guò)程 中,水面高度h隨時(shí)間t的變化規(guī)律如圖所示,則這個(gè)瓶子的形狀是下列的( 。 A. B. C. D.
考點(diǎn):函數(shù)的圖象.分析:根據(jù)圖象可得水面高度開(kāi)始增加的快,后來(lái)增加的慢,從而可判斷容器下面粗,上面細(xì),結(jié)合選項(xiàng)即可得出答案.解答:解:因?yàn)樗娓叨乳_(kāi)始增加的快,后來(lái)增加的慢,所以容器下面粗,上面細(xì).故選B.點(diǎn)評(píng):本題考查了函數(shù)的圖象,要能根據(jù)函數(shù)圖象的性質(zhì)和圖象上的數(shù)據(jù)分析得出函數(shù)的類型和所需要的條件,結(jié)合實(shí)際意義得到正確的結(jié)論. 二、題(共6小題,每小題3分,滿分18分)13.(3分)(2013•玉林)?1= 1 .
考點(diǎn):絕對(duì)值.分析:計(jì)算絕對(duì)值要根據(jù)絕對(duì)值定義去掉這個(gè)絕對(duì)值的符號(hào).解答:解:?1=1.故答案為:1.點(diǎn)評(píng):此題考查了絕對(duì)值的性質(zhì),要求掌握絕對(duì)值的性質(zhì)及其定義,并能熟練運(yùn)用到實(shí)際運(yùn)算當(dāng)中.絕對(duì)值規(guī)律總結(jié):一個(gè)正數(shù)的絕對(duì)值是它本身;一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù);0的絕對(duì)值是0. 14.(3分)(2013•玉林)化簡(jiǎn): = .xkb1.co
考點(diǎn):分母有理化.分析:根據(jù) 的有理化因式是 ,進(jìn)而求出即可.解答:解: = = .故答案為: .點(diǎn)評(píng):此題主要考查了分母有理化,正確根據(jù)定理得出有理化因式是解題關(guān)鍵. 15.(3分)(2013•平?jīng)觯┓纸庖蚴剑簒2?9=。▁+3)(x?3)。
考點(diǎn):因式分解-運(yùn)用公式法.分析:本題中兩個(gè)平方項(xiàng)的符號(hào)相反,直接運(yùn)用平方差公式分解因式.解答:解:x2?9=(x+3)(x?3).點(diǎn)評(píng):主要考查平方差公式分解因式,熟記能用平方差公式分解因式的多項(xiàng)式的特征,即“兩項(xiàng)、異號(hào)、平方形式”是避免錯(cuò)用平方差公式的有效方法. 16.(3分)(2013•玉林)如圖,實(shí)線部分是半徑為15的兩條等弧組成的游泳池,若每條弧所在的圓都經(jīng)過(guò)另一個(gè)圓的圓心,則游泳池的周長(zhǎng)是 40π。
考點(diǎn):弧長(zhǎng)的計(jì)算.分析:如圖,連接O1O2,CD,可求得∠C02O1=60°,∠C02D=120°,再由弧長(zhǎng)公式l= 求得答案.解答:解::如圖,連接O1O2,CD,CO2,∵O1O2=C02=CO1=15c,∴∠C02O1=60°,∴∠C02D=120°,則圓O1,O2的圓心角為360°?120°=240°,則游泳池的周長(zhǎng)為=2× =2× =40π().故答案為:40π.點(diǎn)評(píng):本題考查了弧長(zhǎng)的計(jì)算,解答本題的關(guān)鍵是根據(jù)弧長(zhǎng)公式計(jì)算,在計(jì)算的過(guò)程中首先要利用圓的半徑的關(guān)系求出圓心角. 17.(3分)(2013•玉林)如圖,在直角坐標(biāo)系中,O是原點(diǎn),已知A(4,3),P是坐標(biāo)軸上的一點(diǎn),若以O(shè),A,P三點(diǎn)組成的三角形為等腰三角形,則滿足條件的點(diǎn)P共有 6 個(gè),寫出其中一個(gè)點(diǎn)P的坐標(biāo)是。5,0)。
考點(diǎn):等腰 三角形的判定;坐標(biāo)與圖形性質(zhì).專題:數(shù)形結(jié)合.分析:作出圖形,然后利用數(shù)形結(jié)合的思想求解,再根據(jù)平面直角坐標(biāo)系寫出點(diǎn)P的坐標(biāo)即可.解答:解:如圖所示,滿足條件的點(diǎn)P有6個(gè),分別為(5,0)(8,0)(0,5)(0,6)(?5,0)(0,?5).故答案為:6;(5,0)(答案不唯一,寫出6個(gè)中的一個(gè)即可).點(diǎn)評(píng):本題考查了等腰三角形的判定,坐標(biāo)與圖形的性質(zhì),利用數(shù)形結(jié)合的思想求解更簡(jiǎn)便. 18.(3分)(2013•玉林)如圖,△ABC是⊙O內(nèi)接正三角形,將△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)30°得到△DEF,DE分別交AB,AC于點(diǎn),N,DF交AC于點(diǎn)Q,則有以下結(jié)論:①∠DQN=30°;②△DNQ≌△AN;③△DNQ的周長(zhǎng)等于AC的長(zhǎng);④NQ=QC.其中正確的結(jié)論是、佗冖邸。ò阉姓_的結(jié)論的序號(hào)都填上)
考點(diǎn):圓的綜合題.分析:連結(jié)OA、OD、OF、OC、DC、AD、CF,根據(jù)旋轉(zhuǎn)的性質(zhì)得∠AOD=∠COF=30°,再根據(jù)圓周角定理得∠ACD=∠FDC=15°,然后根據(jù)三角形外角性質(zhì)得∠DQN=∠QCD+∠QDC=30°;同理可得∠AN=30°,由△DEF為等邊三角形得DE=DF,則弧DE=弧DF,得到弧AE=弧DC,所以∠ADE=∠DAC,根據(jù)等腰三角形的性質(zhì)有ND=NA,于是可根據(jù)“AAS”判斷△DNQ≌△AN;利用QD=QC,ND=NA可判斷△DNQ的周長(zhǎng)等于AC的長(zhǎng);由于∠NDQ=60°,∠DQN=30°,則∠DNQ=90°,所以QD>NQ,而QD=QC,所以QC>NQ.解答:解:連結(jié)OA、OD、OF、OC、DC、AD、CF,如圖 ,∵△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)30°得到△DEF,∴∠AOD=∠COF=30°,∴∠ACD= ∠AOD=15°,∠FDC= ∠COF=15°,∴∠DQN=∠QCD+∠QDC=15°+15°=30°,所以①正確;同理可得∠AN=30°,∵△DEF為等邊三角形,∴DE=DF,∴弧DE=弧DF,∴弧AE+弧AD=弧DC+弧CF,而弧AD=弧CF,∴弧AE=弧DC,∴∠ADE=∠DAC,∴ND=NA,在△DNQ和△AN中,∴△DNQ≌△AN(AAS),所以②正確;∵∠ACD=15°,∠FDC=15°,∴QD=QC,而ND=NA,∴ND+QD+NQ=NA+QC+NQ=AC,即△DNQ的周長(zhǎng)等于AC的長(zhǎng),所以③正確; ∵△DEF為等邊三角形,∴∠NDQ=60°,而∠DQN=30°,∴∠DNQ=90°,∴QD>NQ,∵QD=QC,∴QC>NQ,所以④錯(cuò)誤.故答案為①②③.點(diǎn)評(píng):本題考查了圓的綜合題:弧、弦和圓心角之間的關(guān)系以及圓周角定理在有關(guān)圓的幾何證明中經(jīng)常用到,同時(shí)熟練掌握三角形全等的判定、等邊三角形的性質(zhì)以及旋轉(zhuǎn)的性質(zhì). 三、解答題(共8小題,滿分66分)19.(6分)(2013•玉林)計(jì)算: +2cos60°?(π?2?1)0.
考點(diǎn):實(shí)數(shù)的運(yùn)算;零指數(shù)冪;負(fù)整數(shù)指數(shù)冪;特殊角的三角函數(shù)值.分析:分別進(jìn)行三次根式的化簡(jiǎn)、零指數(shù)冪的運(yùn)算, 然后特殊角的三角函數(shù)值后合并即可得出答案.解答:解:原式=2+2× ?1=2.點(diǎn)評(píng):本題考查了實(shí)數(shù)的運(yùn)算,涉及了零指數(shù)冪及特殊角的三角函數(shù)值,特殊角的三角函數(shù)值是需要我們熟練記憶的內(nèi)容. 20.(6分)(2013•玉林)如圖,AB=AE,∠1=∠2,∠C=∠D.求證:△ABC≌△AED.
考點(diǎn):全等三角形的判定.專題:證明題.分析:首先根據(jù)∠1=∠2可得∠BAC=∠EAD,再加上條件AB=AE,∠C=∠D可證明△ABC≌△AED.解答:證明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD,∵在△ABC和△AED中,,∴△ABC≌△AED(AAS).點(diǎn)評(píng):此題主要考查了三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角. 21.(6分)(2013•玉林)已知關(guān)于x的方程x2+x+n=0有兩個(gè)實(shí)數(shù)根?2,.求,n的值.
考點(diǎn):根與系數(shù)的關(guān)系.分析:利用根與系數(shù)的關(guān)系知?2+=?1,?2=n,據(jù)此易求、n的值.解答:解:∵關(guān)于x的方程x2+x+n=0有兩個(gè)實(shí)數(shù)根?2,,∴ ,解得, ,即,n的值分別是1、?2.點(diǎn)評(píng):本題考查了根與系數(shù)的關(guān)系,屬于基礎(chǔ)題.解題過(guò)程中,需要熟記公式x1+x2=? ,x1•x2= . 22.(8分)(2013•玉林)某小區(qū)為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為:可回垃圾、廚余垃圾、其他垃圾三類,分別記為A,B,C:并且設(shè)置了相應(yīng)的垃圾箱,依次記為a,b,c.(1)若將三類垃圾隨機(jī)投入三個(gè)垃圾箱,請(qǐng)你用樹(shù)形圖的方法求垃圾投放正確的概率:(2)為了調(diào)查小區(qū)垃圾分類投放情況,現(xiàn)隨機(jī)抽取了該小區(qū)三類垃圾箱中總重500kg生活垃圾,數(shù)據(jù)如下(單位:)abcA401510B6025040C151555試估計(jì)“廚余垃圾”投放正確的概率.
考點(diǎn):列表法與樹(shù)狀圖法;利用頻率估計(jì)概率.分析:(1)根據(jù)題意畫(huà)出樹(shù)狀圖,由樹(shù)狀圖可知總數(shù)為9,投放正確有3種,進(jìn)而求出垃圾投放正確的概率;(2)由題意和概率的定義易得所求概率.解答:解:(1)如圖所示:共有9種情況,其中投放正確的有3種情況,故垃圾投放正確的概率: = ;
(2)“廚余垃圾”投放正確的概率為: = .點(diǎn)評(píng):本題考查的是用列表法或畫(huà)樹(shù)狀圖法求概率.列表法或畫(huà)樹(shù)狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù):總情況數(shù). 23.(9分)(2013•玉林)如圖,以△ABC的BC邊上一點(diǎn)O為圓心的圓,經(jīng)過(guò)A,B兩點(diǎn),且與BC邊交于點(diǎn)E,D為BE的下半圓弧的中點(diǎn),連接AD交BC于F,若AC=FC.(1)求證:AC是⊙O的切線:(2)若BF=8,DF= ,求⊙O的半徑r.
考點(diǎn):切線的判定.分析:(1)連接OA、OD,求出∠D+∠OFD=90°,推出∠CAF= ∠CFA,∠OAD=∠D,求出∠OAD+∠CAF=90°,根據(jù)切線的判定推出即可;(2)OD=r,OF=8?r,在Rt△DOF中根據(jù)勾股定理得出方程r2+(8?r)2=( )2,求出即可.解答:(1)證明: 連接OA、OD,∵D為弧BE的中點(diǎn),∴OD⊥BC,∠DOF=90°,∴∠D+∠OFD=90°,∵AC=AF,OA=OD,∴∠CAF=∠CFA,∠OAD=∠D,∵∠CFA=∠OFD,∴∠OAD+∠CAF=90°,∴OA⊥AC,∵OA為半徑,∴AC是⊙O切線;
(2)解:∵⊙O半徑是r,當(dāng)F在半徑OE上時(shí),∴OD=r,OF=8?r,在Rt△DOF中,r2+(8?r)2=( )2,r= ,r= (舍去);當(dāng)F在半徑OB上時(shí),∴OD=r,OF=r?8,在Rt△DOF中,r2+(r?8)2=( )2,r= ,r= (舍去);即⊙O的半徑r為 .點(diǎn)評(píng):本題考查了切線的判定,等腰三角形的性質(zhì)和判定,勾股定理等知識(shí)點(diǎn)的應(yīng)用,主要考查學(xué)生的推理和計(jì)算的能力. 24. (9分)(2013•玉林)工匠制作某種金屬工具要進(jìn)行材料煅燒和鍛造兩個(gè)工序,即需要將材料燒到800℃,然后停止煅燒進(jìn)行鍛造操作,經(jīng)過(guò)8in時(shí),材料溫度降為600℃.煅燒時(shí)溫度y(℃)與時(shí)間x(in)成一次函數(shù)關(guān)系;鍛造時(shí),溫度y(℃)與時(shí)間x(in)成反比例函數(shù)關(guān)系(如圖).已知該材料初始溫度是32℃.(1)分別求出材料煅燒和鍛造時(shí)y與x的函數(shù)關(guān)系式,并且寫出自變量x的取值范圍;(2)根據(jù)工藝要求,當(dāng)材料溫度低于480℃時(shí),須停止操作.那么鍛造的操作時(shí)間有多長(zhǎng)?
考點(diǎn):反比例函數(shù)的應(yīng)用;一次函數(shù)的應(yīng)用.分析:(1)首先根據(jù)題意,材料加熱時(shí),溫度y與時(shí)間x成一次函數(shù)關(guān)系;停止加熱進(jìn)行操作時(shí),溫度y與時(shí)間x成反比例關(guān)系;將題中數(shù)據(jù)代入用待定系數(shù)法可得兩個(gè)函數(shù)的關(guān)系式;(2)把y=480代入y= 中,進(jìn)一步求解可得答案.解答:解:(1)停止加熱時(shí),設(shè)y= (k≠0),由題意得600= ,解得k=4800,當(dāng)y=800時(shí),解得x=6,∴點(diǎn)B的坐標(biāo)為(6,800)材料加熱時(shí),設(shè)y=ax+32(a≠0),由題意得800=6a+32,解得a=128,∴材料加熱時(shí),y與x的函數(shù)關(guān)系式為y=128x+32(0≤x≤5).∴停止加熱進(jìn)行操作時(shí)y與x的函數(shù)關(guān)系式為y= (5< x≤20);
(2)把y=480代入y= ,得x=10,故從開(kāi)始加熱到停止操作,共經(jīng)歷了10分鐘.答:從開(kāi)始加熱到停止操作,共經(jīng)歷了10分鐘.點(diǎn)評(píng):考查了反比例函數(shù)和一次函數(shù)的應(yīng)用,現(xiàn)實(shí)生活中存在大量成反比例函數(shù)的兩個(gè)變量,解答該類問(wèn)題的關(guān)鍵是確 定兩個(gè)變量之間的函數(shù)關(guān)系,然后利用待定系數(shù)法求出它們的關(guān)系式. 25.(10分)(2013•玉林)如圖,在直角梯形ABCD中,AD∥BC,AD⊥DC,點(diǎn)A關(guān)于對(duì)角線BD的對(duì)稱點(diǎn)F剛好落在腰DC上,連接AF交BD于點(diǎn)E,AF的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)G,,N分別是BG,DF的中點(diǎn).(1)求證:四邊形ECN是矩形;(2)若AD=2,S梯形ABCD= ,求矩形ECN的長(zhǎng)和寬.
考點(diǎn):直角梯形;矩形的判定與性質(zhì)專題:幾何綜合題.分析:(1)根據(jù)軸對(duì)稱的性質(zhì)可得AD=DF,DE⊥AF,然后判斷出△ADF、△DEF是等腰直角三角形,再根據(jù)等腰直角三角形的性質(zhì)求出∠DAF=∠EDF=45°,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等求出∠BCE=45°,然后判斷出△ BGE是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得E⊥BC,EN⊥CD,再根據(jù)矩形的判定證明即可;(2)判斷出△BCD是等腰直角三角形,然后根據(jù)梯形的面積求出CD的長(zhǎng),再根據(jù)等腰直角三角形的性質(zhì)求出DN,即可得解.解答:(1)證明:∵點(diǎn)A、F關(guān)于BD對(duì)稱,∴AD=DF,DE⊥AF,又∵AD⊥DC,∴△ADF、△DEF是等腰直角三角形,∴∠DAF=∠EDF=45°,∵AD∥BC,∴∠G=∠GAF=45°,∴△BGE是等腰直角三角形,∵,N分別是BG,DF的中點(diǎn),∴E⊥BC,EN⊥CD,又∵AD∥BC,AD⊥DC,∴BC⊥CD,∴四邊形ECN是矩形;
(2)解:由(1)可知,∠EDF=45°,BC⊥CD,∴△BCD是等腰直角三角形,∴BC=CD,∴S梯形ABCD= (AD+BC)•CD= (2+CD)•CD= ,即CD2+2CD?15=0,解得CD=3,CD=?5(舍去),∵△ADF、△DEF是等腰直角三角形,∴DF=AD=2,∵N是DF的中點(diǎn),∴EN=DN= DF= ×2=1,∴CN=CD?DN=3?1=2,∴矩形ECN的長(zhǎng)和寬分別為2,1.點(diǎn)評(píng):本題考查了直角梯形的性質(zhì),軸對(duì)稱的性質(zhì),矩形的判定,等腰直角三角形的判定與性質(zhì),熟練掌握軸對(duì)稱的性質(zhì)判斷出相關(guān)的等腰直角三角形是解題的關(guān)鍵,也是本題的難點(diǎn). 26.(12分)(2013•玉林)如圖,拋物線y=?(x?1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點(diǎn),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D,已知A(?1,0).(1)求點(diǎn)B,C的坐標(biāo);(2)判斷△CDB的形狀并說(shuō)明理由;(3)將△COB沿x軸向右平移t個(gè)單位長(zhǎng)度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.
考點(diǎn):二次函數(shù)綜合題.分析:(1)首先用待定系數(shù)法求出拋物線的解析式,然后進(jìn)一步確定點(diǎn)B,C的坐標(biāo);(2)分別求出△CDB三邊的長(zhǎng)度,利用勾股定理的逆定理判定△CDB為直角三角形;(3)△COB沿x軸向右平移過(guò)程中,分兩個(gè)階段:(I)當(dāng)0<t≤ 時(shí),如答圖2所示,此時(shí)重疊部分為一個(gè)四邊形;(II)當(dāng) <t<3時(shí),如答圖3所示,此時(shí)重疊部分為一個(gè)三角形.解答:解:(1)∵點(diǎn)A(?1,0)在拋物線y=?(x?1)2+c上,∴0=?(?1?1)2+c,得c=4,∴拋物線解析式為:y=?(x?1)2+4,令x=0,得y=3,∴C(0,3);令y=0,得x=?1或x=3,∴B(3,0).
(2)△CDB為直角三角形.理由如下:由拋物線解析式,得頂點(diǎn)D的坐標(biāo)為(1,4).如答圖1所示,過(guò)點(diǎn)D作D⊥x軸于點(diǎn),則O=1,D=4,B=OB?O=2.過(guò)點(diǎn)C作CN⊥D于點(diǎn)N,則CN=1,DN=D?N=D?OC=1.在Rt△OBC中,由勾股定理得:BC= = = ;在Rt△CND中,由勾股定理得:CD= = = ;在Rt△BD中,由勾股定理得:BD= = = .∵BC2+CD2=BD2,∴△CDB為直角三角形(勾股定理的逆定理).
(3)設(shè)直線BC的解析式為y=kx+b,∵B(3,0),C(0,3),∴ ,解得k=?1,b=3,∴y=?x+3,直線QE是直線BC向右平移t個(gè)單位得到,∴直線QE的解析式為:y=?(x?t)+3=?x+3+t;設(shè)直線BD的解析式為y=x+,∵B(3,0),D(1,4),∴ ,解得:=?2,n=6,∴y=?2x+6.連接CQ并延長(zhǎng),射線CQ交BD于點(diǎn)G,則G( ,3).在△COB向右平移的過(guò)程中:(I)當(dāng)0<t≤ 時(shí),如答圖2所示:設(shè)PQ與BC交于點(diǎn)K,可得QK=CQ=t,PB=PK=3?t.設(shè)QE與BD的交點(diǎn)為F,則: ,解得 ,∴F(3?t,2t).S=S△QPE?S△PBK?S△FBE= PE•PQ? PB•PK? BE•yF= ×3×3? (3?t)2? t•2t= t2+3t;(II)當(dāng) <t<3時(shí),如答圖3所示:設(shè)PQ分別與BC、BD交于點(diǎn)K、點(diǎn)J.∵CQ=t,∴KQ=t,PK=PB=3?t.直線BD解析式為y=?2x+6,令x=t,得y=6?2t,∴J(t,6?2t).S=S△PBJ?S△PBK= PB•PJ? PB•PK= (3?t)(6?2t)? (3?t)2= t2?3t+ .綜上所述,S與t的函數(shù)關(guān)系式為:S= . 點(diǎn)評(píng):本題是運(yùn)動(dòng)型二次函數(shù)綜合題,考查了二次函數(shù)的圖象與性質(zhì)、待定系數(shù)法、一次函數(shù)的圖象與性質(zhì)、勾股定理及其逆定理、圖形面積計(jì)算等知識(shí)點(diǎn).難點(diǎn)在于第(3)問(wèn),弄清圖形運(yùn)動(dòng)過(guò)程是解題的先決條件,在計(jì)算圖形面積時(shí),要充分利用各種圖形面積的和差關(guān)系.
右腦記憶論壇 | 快速記憶法 | 記憶力培訓(xùn) | 速讀培訓(xùn) | 速讀軟件 | 右腦培訓(xùn) | 站內(nèi)搜索 | 網(wǎng)站地圖
Copyright(C) 2006-2014 逍遙右腦 All Rights Reserved