逍遙右腦記憶網(wǎng)-免費(fèi)提供各種記憶力訓(xùn)練學(xué)習(xí)方法!
超右腦
|
催眠術(shù)
|
潛能開(kāi)發(fā)
|
影像閱讀
|
右腦開(kāi)發(fā)訓(xùn)練
|
網(wǎng)站地圖
記憶方法
右腦開(kāi)發(fā)
快速閱讀
思維導(dǎo)圖
學(xué)習(xí)方法
學(xué)習(xí)計(jì)劃
作文大全
早期教育
勵(lì)志名言
右腦記憶
記憶法
|
記憶宮殿
|
記憶力訓(xùn)練
記憶術(shù)
|
最強(qiáng)大腦
|
右腦記憶法
學(xué)習(xí)方法
高中學(xué)習(xí)方法
|
高考
|
小學(xué)資源
|
單詞記憶
初中學(xué)習(xí)方法
|
中考
|
教案設(shè)計(jì)
|
試題中心
潛能成功
吸引力法則
|
成功學(xué)
|
九型人格
注意力訓(xùn)練
|
潛意識(shí)
|
思維模式
初中學(xué)習(xí)方法
初中語(yǔ)文
初中英語(yǔ)
初中數(shù)學(xué)
初中物理
初中化學(xué)
初中生物
初中政治
初中歷史
初中地理
中考學(xué)習(xí)網(wǎng)
初一學(xué)習(xí)方法
初一語(yǔ)文
初一數(shù)學(xué)
初一英語(yǔ)
初一生物
初一政治
初一歷史
初一地理
初二物理
初一學(xué)習(xí)
初中教案
初二學(xué)習(xí)方法
初二語(yǔ)文
初二數(shù)學(xué)
初二英語(yǔ)
初二生物
初二政治
初二歷史
初二地理
初三物理
初二學(xué)習(xí)
初中試題
初三學(xué)習(xí)方法
初三語(yǔ)文
初三數(shù)學(xué)
初三英語(yǔ)
初三生物
初三政治
初三歷史
初三地理
初三化學(xué)
初三學(xué)習(xí)
初中作文
逍遙右腦記憶
>
初中學(xué)習(xí)方法
>
初中數(shù)學(xué)
>
證明三角形全等的一般思路
編輯:
逍遙路
關(guān)鍵詞:
初中數(shù)學(xué)
來(lái)源:
高中學(xué)習(xí)網(wǎng)
一、當(dāng)已知兩個(gè)三角形中有兩邊對(duì)應(yīng)相等時(shí),找?jiàn)A角相等(SAS)或第三邊相等(SSS)。
例1. 如圖1,已知:AC=BC,CD=CE,∠ACB=∠DCE=60°,且B、C、D在同一條直線上。
求證:AD=BE
分析:要證AD=BE
注意到AD是△ABD或△ACD的邊,BE是△DEB或△BCE的邊,只需證明△ABD≌△DEB或△ACD≌△BCE,顯然△ABD和△DEB不全等,而在△ACD和△BCE中,AC=BC,CD=CE,故只需證它們的夾角∠ACD=∠BCE即可。
而∠ACD=∠ACE+60°,∠BCE=∠ACE+60°
故△ACD≌△BCE(SAS)
二、當(dāng)已知兩個(gè)三角形中有兩角對(duì)應(yīng)相等時(shí),找?jiàn)A邊對(duì)應(yīng)相等(ASA)或找任一等角的對(duì)邊對(duì)應(yīng)相等(AAS)
例2. 如圖2,已知點(diǎn)A、B、C、D在同一直線上,AC=BD,AM∥CN,BM∥DN。
求證:AM=CN
分析:要證AM=CN
只要證△ABM≌△CDN,在這兩個(gè)三角形中,由于AM∥CN,BM∥DN,可得
∠A=∠NCD,∠ABM=∠D
可見(jiàn)有兩角對(duì)應(yīng)相等,故只需證其夾邊相等即可。
又由于AC=BD,而
故AB=CD
故△ABM≌△CDN(ASA)
三、當(dāng)已知兩個(gè)三角形中,有一邊和一角對(duì)應(yīng)相等時(shí)
中考
,可找另一角對(duì)應(yīng)相等(AAS,ASA)或找?jiàn)A等角的另一邊對(duì)應(yīng)相等(SAS)
例3. 如圖3,已知:∠CAB=∠DBA,AC=BD,AC交BD于點(diǎn)O。
求證:△CAB≌DBA
分析:要證△CAB≌△DBA
在這兩個(gè)三角形中,有一角對(duì)應(yīng)相等(∠CAB=∠DBA)
一邊對(duì)應(yīng)相等(AC=BD)
故可找?jiàn)A等角的邊(AB、BA)對(duì)應(yīng)相等即可(利用SAS)。
四、已知兩直角三角形中,當(dāng)有一邊對(duì)應(yīng)相等時(shí),可找另一邊對(duì)應(yīng)相等或一銳角對(duì)應(yīng)相等
例4. 如圖4,已知AB=AC,AD=AG,AE⊥BG交BG的延長(zhǎng)線于E,AF⊥CD交CD的延長(zhǎng)線于F。
求證:AE=AF
分析:要證AE=AF
只需證Rt△AEB≌Rt△AFC,在這兩個(gè)直角三角形中,已有AB=AC
故只需證∠B=∠C即可
而要證∠B=∠C
需證△ABG≌△ACD,這顯然易證(SAS)。
五、當(dāng)已知圖形中無(wú)現(xiàn)存的全等三角形時(shí),可通過(guò)添作輔助線構(gòu)成證題所需的三角形
例5. 如圖5,已知△ABC中,∠BAC=90°,AB=AC,BD是中線,AE⊥BD于F,交BC于E。
求證:∠ADB=∠CDE
分析:由于結(jié)論中的兩個(gè)角分屬的兩個(gè)三角形不全等,故需作輔助線。注意到AE⊥BD,∠BAC=90°,有∠1=∠2,又AB=AC。故可以∠2為一內(nèi)角,以AC為一直角邊構(gòu)造一個(gè)與△ABD全等的直角三角形,為此,過(guò)C作CG⊥AC交AE的延長(zhǎng)線于G,則△ABD≌△CAG,故∠ADB=∠CGA。
對(duì)照結(jié)論需證∠CGA=∠CDE
又要證△CGE≌△CDE,這可由
CG=AD=CD,∠ECG=∠EBA=∠ECD,CE=CE而獲證。
本文來(lái)自:逍遙右腦記憶 http://www.portlandfoamroofing.com/chuzhong/35862.html
相關(guān)閱讀:
學(xué)好初中數(shù)學(xué)的四個(gè)方法
上一篇:
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):利用一次函數(shù)解決實(shí)際問(wèn)題
下一篇:
初中數(shù)學(xué)數(shù)與代數(shù)知識(shí)點(diǎn)
相關(guān)主題
學(xué)好初中數(shù)學(xué)的四個(gè)方法
巧記初中數(shù)學(xué)口訣
中考數(shù)學(xué)高分訣竅經(jīng)驗(yàn)分享
初中數(shù)學(xué)學(xué)習(xí)法:有疑必問(wèn)“事半功倍”
巧旋轉(zhuǎn)妙解題
幾何相似三角形的判定定理
怎么學(xué)好初中幾何?
多邊形內(nèi)角和問(wèn)題的求解技巧
埋下頭去做題,抬起頭來(lái)想題
分式運(yùn)算的幾點(diǎn)技巧
相關(guān)推薦
推薦閱讀
怎樣才能學(xué)好初中數(shù)學(xué)概念
比如二次函數(shù)是形如y = ax2 +bx + c (a≠0)的函數(shù),如果去掉a≠0這個(gè)條件,則二次項(xiàng)的系……
證明三角形全等的一般思路
一、當(dāng)已知兩個(gè)三角形中有兩邊對(duì)應(yīng)相等時(shí),找?jiàn)A角相等(SAS)或第三邊相等(SSS)。 例1. ……
記憶有遺忘規(guī)律
一道小學(xué)四年級(jí)數(shù)學(xué)題,家長(zhǎng)用二元二次方程來(lái)輔導(dǎo)孩子,難題破解了,孩子卻犯難:爸爸與老……
初二數(shù)學(xué)分式知識(shí)點(diǎn)總結(jié)指導(dǎo)
【 初二 數(shù)學(xué)分式總結(jié)指導(dǎo)】以下的內(nèi)容是對(duì)分式知識(shí)點(diǎn)的總結(jié)學(xué)習(xí),相信同學(xué)們一定會(huì)認(rèn)真學(xué)……
初中幾何學(xué)習(xí)方法
在的中,幾何一直是大多生的難題,那么幾何到底有沒(méi)有捷徑呢?我們又應(yīng)該怎樣來(lái)幾何呢? (……
相關(guān)閱讀
中考數(shù)學(xué)應(yīng)試技巧及心理調(diào)整
提高中考數(shù)學(xué)解題的方法
多邊形內(nèi)角和問(wèn)題的求解技巧
初中數(shù)學(xué)巧記妙語(yǔ)
初中數(shù)學(xué)圓臺(tái)公式大全
指導(dǎo):初三數(shù)學(xué)后期該如何復(fù)習(xí)
初中數(shù)學(xué)學(xué)習(xí)方法:傻做題不如巧做
四邊形?初中數(shù)學(xué)公式大全
初中數(shù)學(xué)7點(diǎn)學(xué)習(xí)方法
初中數(shù)學(xué)試題精選之函數(shù)(1)
右腦記憶論壇
|
快速記憶法
|
記憶力培訓(xùn)
|
速讀培訓(xùn)
|
速讀軟件
|
Copyright(C) 2006-2014
逍遙右腦
All Rights Reserved