逍遙右腦記憶網(wǎng)-免費提供各種記憶力訓練學習方法!
超右腦
|
催眠術
|
潛能開發(fā)
|
影像閱讀
|
右腦開發(fā)訓練
|
網(wǎng)站地圖
記憶方法
右腦開發(fā)
快速閱讀
思維導圖
學習方法
學習計劃
作文大全
早期教育
勵志名言
右腦記憶
記憶法
|
記憶宮殿
|
記憶力訓練
記憶術
|
最強大腦
|
右腦記憶法
學習方法
高中學習方法
|
高考
|
小學資源
|
單詞記憶
初中學習方法
|
中考
|
教案設計
|
試題中心
潛能成功
吸引力法則
|
成功學
|
九型人格
注意力訓練
|
潛意識
|
思維模式
初中學習方法
初中語文
初中英語
初中數(shù)學
初中物理
初中化學
初中生物
初中政治
初中歷史
初中地理
中考學習網(wǎng)
初一學習方法
初一語文
初一數(shù)學
初一英語
初一生物
初一政治
初一歷史
初一地理
初二物理
初一學習
初中教案
初二學習方法
初二語文
初二數(shù)學
初二英語
初二生物
初二政治
初二歷史
初二地理
初三物理
初二學習
初中試題
初三學習方法
初三語文
初三數(shù)學
初三英語
初三生物
初三政治
初三歷史
初三地理
初三化學
初三學習
初中作文
逍遙右腦記憶
>
教案設計
>
數(shù)學
>
八年級
>
全等三角形的判定
編輯:
逍遙路
關鍵詞:
八年級
來源:
高中學習網(wǎng)
19.2 全等三角形的判定(4)
【目標】
1.使學生理 解邊邊邊公理的 內(nèi)容,能運用邊邊邊公理證明三角形全等,為證明線段相等或角相等創(chuàng)造條件;
2.繼續(xù)培養(yǎng)學生畫圖、實 驗,發(fā)現(xiàn)新知識的能力.
【重點難點】
1.難點:讓學生掌握邊邊邊 公理的內(nèi)容和運用公理 的自覺性;
2.重點:靈活運用SSS判定兩個三角形是否全等.
【過程 】
一、創(chuàng)設問題情境,引入新課
請問同學,老師在黑板上畫得兩個三角形,△ ABC與△ 全等嗎? 你是如何判定的.
(同學們各抒己見,如:動手用紙剪下一個三角形,剪下疊到另一個三角形上,是否完全重合;測量兩個三角形的所有邊與角,觀 察是否有三條邊對應相等,三個角對應相等.)
上一節(jié)課我們已經(jīng)探討了兩個三角形只滿足一個或兩個邊、角對應相等條件時,兩個三角形不一定全
等.滿足三個條件時,兩個三 角形是否全等呢?現(xiàn)在,我們就一起來探討研究.
二、實踐探索,總結(jié)規(guī)律
1、問題1:如果兩個三角形的三條邊分別相等,那么這兩個三角形會全等嗎?做一做:給你三條線段 、 、 ,分別為 、 、 ,你能畫出這個三角形嗎?
先請幾位同學說說畫圖思路后,教師指導,同學們動手畫,教師演示并敘述書寫出步驟.
步驟:
(1)畫一線段AB使 它的長度等于c(4.8cm).
(2)以點A為圓心,以線段b(3cm)的長為半徑畫圓;以點B為圓心,以線段a(4cm)的長為半徑畫圓;兩弧交于點C.
(3)連結(jié)AC、BC.
△ABC即為所求
把你畫的三角形與其他同學的圖形疊合在一起,你們會發(fā)現(xiàn)什么?
換三條線段,再試試看,是否有同樣的 結(jié)論
請你結(jié)合畫圖、對比,說說你發(fā)現(xiàn)了什么?
同學們各抒己見,教師總結(jié):給定三條線段,如果它們能組 成三角形,那么所畫的三角形都是全等的. 這樣我們就得到判定三角形全等的一種簡便 的方法: 如果兩個三角形的 三 條邊分別對應相等,那么這兩個三角形全等.簡寫為“邊邊邊”,或簡記為(S.S.S.).
2、問題2:你能用 相似三角形的判定法解釋這個(SSS)三角形全等的判定法嗎?
(我們已經(jīng)知道,三條邊對應成比例的兩個三角形相似,而相似比為1時,三條邊就分別對應相等了,這兩個三角形不但形狀相同,而且大小都一樣,即為全等三角形.)
3、問題3、你用這個“SSS”三角形全等的判定法解釋三角形具有穩(wěn)定性嗎?
(只要三角形三邊的長度確定了,這個三角形的形狀和大小就完全確定了)
4、范例:
例1 如圖19.2.2,四邊形ABCD中,AD=BC,AB=DC,試說明△ABC≌△CDA. 解:已知 AD=BC,AB=DC , 又因為AC是公共邊,由(S.S.S.)全等判定法,可知 △ABC≌△CDA
5、練習:
6、試一試:已知一個三角形的三個內(nèi) 角分別為 、 、 ,你能畫出這個三角形嗎?把你畫的三角形與同伴畫的進行比較,你發(fā)現(xiàn)了什么?
(所畫出的三角形都是相似的 ,但大小不一定相 同).
三個對應角相等的兩個三角形不一定全等.
三、加強練習,鞏固知識
1、如圖, , ,△ABC≌△DCB全等嗎?為什么?
2、如圖,AD是△ABC的中線, . 與 相等嗎?請說明理由.
四、小結(jié)
本節(jié)課探討出可用(SSS)來判定兩個三角形全等,并能靈活運用( SSS )來判定三角形全等.三個角對應相等的兩個三角不一定會全等.
五、作業(yè)
本文來自:逍遙右腦記憶 http://www.portlandfoamroofing.com/chuer/71867.html
相關閱讀:
平行四邊形的識別
上一篇:
幾何不等式
下一篇:
一次函數(shù)的圖象
相關主題
平行四邊形的識別
矩形的性質(zhì)
三角形的邊與角
三角形內(nèi)角和定理的證明
得到直角三角形嗎
相似三角形的性質(zhì)
等腰梯形的判定
勾股定理的應用學案
第10章圖形的相似期中復習導學案
圖形的折疊、剪拼與分割
相關推薦
推薦閱讀
全等三角形(二)學案
【使用說明與學法指導】 1.前完成預習案,牢記基礎知識,掌握基本題型,時間不超過15分鐘!
實數(shù)(3)
j.Co M 第二章實 數(shù) 總課時:11課 時 使用人: 備課時間:開學前第一周 上課時間:第一周 ……
八年級數(shù)學上冊全冊教案
M 課題11.1全等三角形課型新授課 教學目標1.知道什么是全等形、全等三角形及全等三角形的……
矩形的性質(zhì)
1、理解并掌握矩形的定義;掌握矩形的性質(zhì)定理1、2及推論;3、會用這些定理進行有關的論證……
探索多邊形的內(nèi)角和與外角和2
第四 四邊形性質(zhì)探索 總時:12時 使用人: 備時間:開學第一 周 上時間:第七周 第11時:4、……
相關閱讀
等邊三角形2導學案
平均數(shù)
全等三角形(一)學案
平行四邊形的性質(zhì)一導學案
等腰三角形1導學案
初二數(shù)學下冊第17章反比例函數(shù)期末復習教
有理數(shù)的混合運算
多邊形的邊角與對角線
八年級上冊數(shù)學全冊導學案(人教版)
三角形全等的判定教學案
右腦記憶論壇
|
快速記憶法
|
記憶力培訓
|
速讀培訓
|
速讀軟件
|
右腦圖卡
Copyright(C) 2006-2014
逍遙右腦
All Rights Reserved