2013屆高三數(shù)學章末綜合測試題(15)平面解析幾何(1) 一、(本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的)1.已知圓x2+y2+Dx+Ey=0的圓心在直線x+y=1上,則D與E的關系是( )A.D+E=2 B.D+E=1C.D+E=-1 D.D+E=-2[X k b 1 . c o 解析 D 依題意得,圓心-D2,-E2在直線x+y=1上,因此有-D2-E2=1,即D+E=-2.2.以線段AB:x+y-2=0(0≤x≤2)為直徑的圓的方程為( )A.(x+1)2+(y+1)2=2 B.(x-1)2+(y-1)2=2C.(x+1)2+(y+1)2=8 D.(x-1)2+(y-1)2=8 解析 B 直徑的兩端點為(0,2),(2,0),∴圓心為(1,1),半徑為2,圓的方程為(x-1)2+(y-1)2=2.3.已知F1、F2是橢圓x24+y2=1的兩個焦點,P為橢圓上一動點,則使PF1•PF2取最大值的點P為( ) A.(-2,0) B.(0,1) C.(2,0) D.(0,1)和(0,-1) 解析 D 由橢圓定義,PF1+PF2=2a=4,∴PF1•PF2≤PF1+PF222=4, 當且僅當PF1=PF2,即P(0,-1)或(0,1)時,取“=”.4.已知橢圓x216 +y225=1的焦點分別是F1、F2,P是橢圓上一點,若連接F1、F2、P三點恰好能構成直角三角形,則點P到y(tǒng)軸的距離是( ) A.165 B.3 C.163 D.253 解析 A 橢圓x216+y225=1的焦點分別為F1(0,-3)、F2(0,3),易得∠F1PF2<π2,∴∠PF1F2=π2或∠PF2F1=π2,點P到y(tǒng)軸的距離d= xp,又yp=3,x2p16+y2p25=1,解得xP=165,故選A.5.若曲線y=x2的一條切線l與直線x+4y-8=0垂直,則l的方程為( )A.4x+y+4=0 B.x-4y-4=0C.4x-y-12=0 D.4x-y-4=0 解析 D 設切點為(x0,y0),則y′x=x0=2x0, ∴2x0=4,即x0=2, ∴切點為(2,4),方程為y-4=4(x-2), 即4x-y-4=0.6.“>n>0”是“方程x2+ny2=1表示焦點在y軸上的橢圓”的( ) A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 解析 C 方程可化為x21+y21n=1,若焦點在y軸上,則1n>1>0,即>n>0.7.設雙曲線x2a2-y2b2=1的一條漸近線與拋物線y=x2+1只有一個公共點,則雙曲線的離心率為( )A.54 B.5 C.52 D.5 解析 D 雙曲線的漸近線為y=±bax,由對稱性,只要與一條漸近線有一個公共點 即可由y=x2+1,y=bax,得x2-bax+1=0. ∴Δ=b2a2-4=0,即b2=4a2,∴e=5.8.P為橢圓x24+y23=1上一點,F(xiàn)1、F2為該橢圓的兩個焦點,若∠F1PF2=60°,則PF1→•PF2→=( )A.3 B.3 C.23 D.2 解析 D ∵S△PF1F2=b2tan60°2=3×tan 30°=3=12PF1→•PF2→•sin 60°,∴PF1→PF2→=4,∴PF1→•PF2→=4×12=2.9.設橢圓x22+y2n2=1(>0,n>0)的右焦點與拋物線y2=8x的焦點相同,離心率為12,則此橢圓的方程為( )A.x212+y216=1 B.x216+y212=1C.x248+y264=1 D.x264+y248=1 解析 B 拋物線的焦點為(2,0),∴由題意得c=2,c=12, ∴=4,n2=12,∴方程為x216+y212=1.10.設直線l過雙曲線C的一個焦點,且與C的 一條對稱軸垂直,l與C交于A,B兩點,AB為C的實軸長的2倍,則C的離心率為( )A.2 B.3 C.2 D.3 解析 B 設雙曲線C的方程為x2a2-y2b2=1,焦點F(-c,0),將x=-c代入x2a2-y2b2= 1可得y2=b4a2,∴AB=2×b2a=2×2a,∴b2=2a2,c2=a2+b2=3a2,∴e=ca=3.11.已知拋物線y2=4x的準線過雙曲線x2a2-y2b2=1(a>0,b>0)的左頂點,且此雙曲線的一條漸近線方程為y=2x,則雙曲線的焦距為( ) A.5 B.25 C.3 D.23 解析 B ∵拋物線y2=4x的準線x=-1過雙曲線x2a2-y2b2=1(a>0,b>0)的左頂點,∴a=1,∴雙曲線的漸近線方程為y=±bax=±bx.∵雙 曲線的一條漸近線方程為y=2x,∴b=2,∴c=a2+b2=5,∴雙曲線的焦距為25.12.已知拋物線y2=2px(p>0)上一點(1,)(>0)到其焦點的距離為5,雙曲線x2a-y2=1的左頂點為 A,若雙曲線的一條漸近線與直線A平行,則實數(shù)a的值為( )A.19 B.14 C.13 D.12 解析 A 由于(1,)在拋物線上,∴2=2p,而到拋物線的焦點的距離為5,根據(jù)拋物線的定義知點到拋物線的準線x=-p2的距離也為5,∴1+p2=5,∴p=8,由此可以求得=4,雙曲線的左頂點為A(-a,0),∴kA=41+a,而雙曲線的漸近線方程為y=±xa,根據(jù)題意得,41+a=1a,∴a=19.二、題(本大題共4小題,每小題5分, 共20分.把答案填在題中橫線上)13.已知直線l1:ax-y+2a+1=0和l2:2x-(a-1)y+2=0(a∈R),則l1⊥l2的充要條件是a=________. 解析 l1⊥l2⇔a•2a-1=-1,解得a=13.【答案】 1314.直線l:y=k(x+3)與圓O:x2+y2=4交于A,B兩點,AB=22,則實數(shù)k=________. 解析 ∵AB=22,圓O半徑為2,∴O到l的距離d=22-2=2.即3kk2+1=2,解得k=± 147.【答案】 ±14715.過原點O作圓x2+y2-6x-8y+20=0的兩條切線,設切點分別為P、Q,則線段PQ的長為________. 解析 如圖,圓的方程可化為(x-3)2+(y-4)2=5,∴O=5,OQ=25-5=25.在△OQ中,12QA•O=12OQ•Q,∴AQ=25×55=2,∴PQ=4.【答案】 416.在△ABC中,BC→=4,△ABC的內(nèi)切圓切BC于D點,且BD→-CD→=22,則頂點A的軌跡方程為________.
解析 以BC的中點為原點,中垂線為y軸建立如圖所示的坐標系,E、F分別為兩個切點.則BE=BD,CD=CF,AE=AF.∴AB-AC=22,∴點A的軌跡為以B,C為焦點的雙曲線的右支(y≠0),且a=2,c=2,∴b=2,∴方程為x22-y22=1(x>2).【答案】 x22-y22=1(x>2)三、解答題(本大題共6小題,共70分.解答應寫出字說明、證明過程或演算步驟)17.(10分)在平面直角坐標系中,已知圓心在直線y=x+4上,半徑為22的圓C經(jīng)過原點O.(1)求圓C的方程;(2)求經(jīng)過點(0,2)且被圓C所截得弦長為4的直線方程. 解析 (1)設圓心為(a,b),則b=a+4,a2+b2=22,解得a=-2,b=2,故圓的方程為(x+2)2+(y-2)2=8.(2)當斜率不存在時,x=0,與圓的兩個交點為(0,4),(0,0),則弦長為4,符合題意;當斜率存在時,設直線為y-2=kx,則由題意得,8=4+-2k1+k22,無解.綜上,直線方程為x=0.18.(12分)(2011•合肥一模)橢圓的兩個焦點坐標分別為F1(-3,0)和F2(3,0),且橢圓過點1,-32.(1)求橢圓方程;(2)過點-65,0作不與y軸垂直的直線l交該橢圓于,N兩點,A為橢圓的左頂點.試判斷∠AN的大小是否為定值,并說明理由. 解析 (1)設橢圓方程為x2a2+y2b2=1(a>b>0),由c=3,橢圓過點1,-32可得a2-b2=3,1a2+34b2=1, 解得a2=4,b2=1,所以可得橢圓方程為x24+y2=1.(2)由題意可設直線N的方程為:x=ky-65, 聯(lián)立直線N和橢圓的方程:x=ky-65,x24+y2=1,化簡得(k2+4)y2-125ky-6425=0.設(x1,y1),N(x2,y2),則y1y2=-6425k2+4,y1+y2=12k5k2+4,又A(-2,0),則A→•AN→=(x1+2,y1)•(x2+2,y2)=(k2+1)y1y2+45k(y1+y2)+1625=0,所以∠AN=π2.19.(12分)已知橢圓C的中心為直角坐標系xOy的原點,焦點在x軸上,它的一個頂點到兩個焦 點的距離分別為7和1.(1)求橢圓C的方程;(2)若P為橢圓C上的動點,為過P且垂直于x軸的直線上的點,OPO=e(e為橢圓離心率),求點的軌跡方程,并說明軌跡是什么曲線. 解析 (1)設橢圓長半軸長及半焦距分別為a,c,由已知,得a-c=1,a+c=7,解得a=4,c=3.∴橢圓方程為x216+y27=1.(2)設(x,y),P(x,y1),其中x∈[-4,4],由已知得x2+y21x2+y2=e2,而e=34,故16(x2+y21)=9(x2+y2),①由點P在橢圓C上,得y21=112-7x216,代入①式并化簡,得9y2=112.∴點的軌跡方程為y=±473(-4≤x≤4),∴軌跡是兩條平行于x軸的線段.20.(12分)給定拋物線y2=2x,設A(a,0),a>0,P是拋物線上的一點,且PA=d,試求d的最小值. 解析 設P(x0,y0)(x0≥0),則y20=2x0,∴d=PA=x0-a2+y20=x0-a2+2x0=[x0+1-a]2+2a-1.∵a>0,x0≥0,∴(1)當0<a<1時,1-a>0,此時有x0=0時,din=1-a2+2a-1=a; (2)當a≥1時,1-a≤0,此時有x0=a-1時,din=2a-1.21.(12分)已知雙曲線的中心在原點,焦點F1,F(xiàn)2在坐標軸上,離心率為2,且過點(4,-10),點(3,)在雙曲線上.(1)求雙曲線方程;(2)求證:點在以F1F2為直徑的圓上;(3)求△F1F2的面積. 解析 (1)∵雙曲線離心率e=2,∴設所求雙曲線方程為x2-y2=λ(λ≠0), 則由點(4,-10)在雙曲線上,知λ=42-(-10)2=6,∴雙曲線方程為x2-y2=6.(2)若點(3,)在雙曲線上,則32-2=6,∴2=3,由雙曲線x2-y2=6知F1(23,0),F(xiàn)2(-23,0),∴F1→•F2→=(23-3,-)•(-23- 3,-)=2-3=0,∴F1→⊥F2→,故點在以F1F2為直徑的圓上.(3)S△F1F2=12F1F2•=23×3=6.22.(12分)已知實數(shù)>1,定點A(-,0),B(,0),S為一動點,點 S與A,B兩點連線斜率之積為-12.(1)求動點S的軌跡C的方程,并指出它是哪一種曲線;(2)當=2時,問t取何值時,直線l:2x-y+t=0(t>0)與曲線C有且只有一個交點?(3)在(2)的條件下,證明:直線l上橫坐標小于2的點P到點(1,0)的距離與到直線x=2的距離之比的最小值等于曲線C的離心率. 解 析 (1)設S(x,y),則kSA=y(tǒng)-0x+,kSB=y(tǒng)-0x-.由題意,得y2x2-2=-12,即x22+y2=1(x≠±).∵>1,∴軌跡C是中心在坐標原點,焦點在x軸上的橢圓(除去x軸上的兩頂點),其中長軸長為2,短軸長為2.(2)當=2時,曲線C的方程為x22+y2=1(x≠±2).由2x-y+t=0,x22+y2=1,消去y,得9x2+8tx+2t2-2=0.令Δ=64t2-36×2(t2-1)=0,得t=±3.∵t>0,∴t=3.此時直線l與曲線C有且只有一個公共點.(3)由(2)知直線l的方程為2x-y+3=0,設點P(a,2a+3)(a<2),d1表示P到點(1,0)的距離,d2表示P到直線x=2的距離,則d1=a-12+2a+32=5a2+10a+10,d2=2-a,∴d1d2=5a2+10a+102-a=5×a2+2a+2a-22.令f(a)=a2+2a+2a-22,則f′(a)=2a+2a-22-2a2+2a+2a-2a-24=-6a+8a-23.令f′(a)=0,得a=-43.∵當a<-43時,f′(a)<0;當-43<a<2時,f′(a)>0.∴f(a)在a=-43時取得最小值,即d1d2取得最小值,∴d1d2in=5•f-43=22,又橢圓的離心率為22,∴d1d2的最小值等于橢圓的離心率.
右腦記憶論壇 | 快速記憶法 | 記憶力培訓 | 速讀培訓 | 速讀軟件
Copyright(C) 2006-2014 逍遙右腦 All Rights Reserved