逍遙右腦記憶網(wǎng)-免費(fèi)提供各種記憶力訓(xùn)練學(xué)習(xí)方法!
超右腦
|
催眠術(shù)
|
潛能開發(fā)
|
影像閱讀
|
右腦開發(fā)訓(xùn)練
|
網(wǎng)站地圖
記憶方法
右腦開發(fā)
快速閱讀
思維導(dǎo)圖
學(xué)習(xí)方法
學(xué)習(xí)計(jì)劃
作文大全
早期教育
勵(lì)志名言
右腦記憶
記憶法
|
記憶宮殿
|
記憶力訓(xùn)練
記憶術(shù)
|
最強(qiáng)大腦
|
右腦記憶法
學(xué)習(xí)方法
高中學(xué)習(xí)方法
|
高考
|
小學(xué)資源
|
單詞記憶
初中學(xué)習(xí)方法
|
中考
|
教案設(shè)計(jì)
|
試題中心
潛能成功
吸引力法則
|
成功學(xué)
|
九型人格
注意力訓(xùn)練
|
潛意識(shí)
|
思維模式
高中學(xué)習(xí)方法
高中語文
高中英語
高中數(shù)學(xué)
高中物理
高中化學(xué)
高中生物
高中政治
高中歷史
高中地理
高中教案
高中試題
高一學(xué)習(xí)方法
高一語文
高一數(shù)學(xué)
高一英語
高一物理
高一化學(xué)
高一生物
高一政治
高一歷史
高一地理
高一學(xué)習(xí)
高二學(xué)習(xí)方法
高二語文
高二數(shù)學(xué)
高二英語
高二物理
高二化學(xué)
高二生物
高二政治
高二歷史
高二地理
高二學(xué)習(xí)
高三學(xué)習(xí)方法
高三語文
高三數(shù)學(xué)
高三英語
高三物理
高三化學(xué)
高三生物
高三政治
高三歷史
高三地理
高三學(xué)習(xí)
逍遙右腦記憶
>
試題中心
>
數(shù)學(xué)
>
高三
>
山東省2013年高考數(shù)學(xué)理科試題(含答案)
編輯:
逍遙路
關(guān)鍵詞:
高三
來源:
高中學(xué)習(xí)網(wǎng)
絕密★啟用并使用完畢前
2013年普通高等學(xué)校招生全國統(tǒng)一考試(山東卷)
理科數(shù)學(xué)
本試卷分第Ⅰ卷和第Ⅱ卷兩部分。共4頁,滿分150分?荚囉脮r(shí)150分鐘.考試結(jié)束后,將本卷和答題卡一并交回。
注意事項(xiàng):
1. 答題前,考試務(wù)必用0.5毫米黑色墨水簽字筆將自己的姓名、座號(hào)、考生號(hào)、縣區(qū)和科類在答題卡和試卷規(guī)定的位置上。
2. 第Ⅰ卷每小題選出答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其他答案標(biāo)號(hào),答案不能答在試卷上。
3. 第Ⅱ卷必須用0.5毫米黑色墨水簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)的位置,不能寫在試卷上;如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不能使用涂改液、膠帶紙、修正帶。不按以上要求作答的答案無效。
4. 題請(qǐng)直接填寫答案,解答題應(yīng)寫出文字說明\證明過程或演算步驟.
參考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B獨(dú)立,那么P(AB)=P(A)*P(B)
第Ⅰ卷 (共60分)
一、:本大題共12小題,每小題5分,滿分60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.
1、復(fù)數(shù) 滿足 為虛數(shù)單位),則 的共軛復(fù)數(shù) 為( )
(A)2+i (B)2-i (C)5+i (D)5-i
2、已知集合 ,則集合 中元素的個(gè)數(shù)是( )
(A)1 (B)3 (C)5 (D)9
3、已知函數(shù) 為奇函數(shù),且當(dāng) 時(shí), ,則 =( )
(A)-2 (B)0 (C)1 (D)2
4、已知三棱柱 的側(cè)棱與底面垂直,體積為 ,底面是邊長為 的正三角形,若P為底面 的中心,則PA與平面ABC所成角的大小為( )
(A) (B) (C) (D)
5、若函數(shù) 的圖像沿 軸向左平移 個(gè)單位,得到一個(gè)偶函數(shù)的圖像,則 的一個(gè)可能取值為( )
(A) (B) (C)0 (D)
6、在平面直角坐標(biāo)系 中, 為不等式組 ,所表示的區(qū)域上一動(dòng)點(diǎn),則直線 斜率的最小值為
7、給定兩個(gè)命題 若 是 的必要而不充分條件,則 是 的
(A)充分而不必要條件 (B)必要而不充分條件
(C)充要條件 (D )既不充分也不必要條件
8、函數(shù) 的圖象大致為
(A) (B) (C) (D)
9、過點(diǎn)(3,1)作圓 作圓的兩條切線切點(diǎn)為A,B,則直線AB的方程
(A) (B)
(C) (D)
10、用0,1, ,9十個(gè)數(shù)字可以組成有重復(fù)數(shù)字的三位數(shù)的個(gè)數(shù)為
(A)243 (B)252 (C)261 (D)279
11、拋物線 的焦點(diǎn)與雙曲線 的右焦點(diǎn)的連線交 于第一象限的點(diǎn)M,若 在點(diǎn)M處的切線平行于 的一條漸近線,則
(B) (C) (D)
12、設(shè)正實(shí)數(shù) 滿足 ,則當(dāng) 取最大值時(shí), 的最大值為
(A)0 (B)1 (C) (D)3
二、題:本大題共4小題,每小題4分,共16分
13、執(zhí)行右面的程序框圖,若輸入的 值為0.25,則輸出的 的值為______________
14、在區(qū)間 上隨機(jī)取一個(gè)數(shù) ,使得 成立的概率為______________.
15、已知向量 與 的夾角1200,且 =3, =2,若 ,且 ,則實(shí)數(shù) 的值為____________.
16、 定義“正對(duì)數(shù)”: 現(xiàn)有四個(gè)命題:
①若
②若
③若
④若
其中真命題有____________.(寫出所有真命題的編號(hào))
三、解答題:本大題共6小題,共74分。
17、 (本小題滿分12分)
設(shè) 的內(nèi)角 所對(duì)的邊為 且
求 的值;
求 的值。
18、(本小題滿分12分)
如圖所示,在三棱錐P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F(xiàn)分別是AQ,BQ,AP,BP的中點(diǎn),AQ=2BD,PD與EQ交于點(diǎn)G,PC與FQ交于點(diǎn)H,連接GH。
(Ⅰ)求證:AB//GH;
(Ⅱ)求二面角D-GH-E的余弦值
19、(本小題滿分12分)
甲、乙兩支排球隊(duì)進(jìn)行比賽,約定先勝3局者獲得比賽的勝利,比賽隨即結(jié)束.除第五局甲隊(duì)獲勝的概率是 外,其余每局比賽甲隊(duì)獲勝的概率都是 .假設(shè)每局比賽結(jié)果互相獨(dú)立。
(Ⅰ)分別求甲隊(duì)以3:0,3:1,3:2勝利的概率;
(Ⅱ)若比賽結(jié)果為3:0或3:1,則勝利方得3分,對(duì)方得0分;若比賽結(jié)果為3:2,則勝利方得2分、對(duì)方得1分.求乙隊(duì)得分 的分布列及數(shù)學(xué)期望。
20、(本小題滿分12分)
設(shè)等差數(shù)列{ }的前n項(xiàng)和為 ,且 , 。
(Ⅰ)求數(shù)列{ }的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{ }的前n項(xiàng)和 ,且 ( 為常數(shù)),令 .求數(shù)列{ }的前n項(xiàng)和 。
21、(本小題滿分13分)
設(shè)函數(shù) .
(Ⅰ)求 的單調(diào)區(qū)間、最大值;
(Ⅱ)討論關(guān)于 的方程 根的個(gè)數(shù)。
22、(本小題滿分13分)
橢圓 的左、右焦點(diǎn)分別是 ,離心率為 ,過 且垂直于 軸的直線被橢圓 截得的線段長為 .
(Ⅰ)求橢圓 的方程;
(Ⅱ)點(diǎn) 是橢圓 上除長軸端點(diǎn)外的任一點(diǎn),連接 ,設(shè)∠ 的角平分線 交 的長軸于點(diǎn) ,求 的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,過點(diǎn) 作斜率為 的直線 ,使得 與橢圓 有且只有一個(gè)公共點(diǎn).設(shè)直線 的斜率分別為 ,若 ≠0,試證明 為定值,并求出這個(gè)定值。
濟(jì)南新東方優(yōu)能中學(xué)
2013年普通高等學(xué)校招生全國統(tǒng)一考試(山東卷)答案
一、
1、D 2、C 3、A 4、B 5、B 6、C 7、A 8、D 9、A 10、B 11、D 12、B
二、填空題
13、3 14、 15、 16、 ①③④
18、(Ⅰ)證明:由已知得EF, DC分別為 PAB和 QAB的中位線
所以EF//AB, DC//AB ,則EF//DC
又EF 平面PDC, DC 平面PDC
所以EF//平面PDC
又EF 平面QEF且平面QEF 平面PDC=GH
所以EF//GH
又因?yàn)镋F//AB
所以AB//GH
(Ⅱ)解:因?yàn)锳Q=2BD 且D為AQ中點(diǎn)
所以 ABQ為直角三角形,AB BQ
又PB 平面ABC, 則PB AB
PB BQ=B且PB 平面PBQ,BQ平面PBQ,
所以AB 平面PBQ
由(Ⅰ)知AB//GH
所以GH 平面PBQ
則GH FH, GH HC
所以 FHC即為二面角D-GH-E的平面角
由條件易知 PBC+ BFQ+ PQB+ FHC=2
且 BFQ= PQB,tan BFQ=2
所以cos FHC=cos( —2 BFQ)=—2sin BFQcos BFQ=
19、解:(1)設(shè)“甲隊(duì)以3:0勝利”為事件A;“甲隊(duì)以3:1勝利”為事件B
“甲隊(duì)以3:2勝利”為事件C
(2)根據(jù)題意可知 的可能取值為:“0,1,2,3”
乙隊(duì)得分的 的分布列如圖所示::
0123
數(shù)學(xué)期望:
.
20.(Ⅰ)解:設(shè)等差數(shù)列{ }的首項(xiàng)為 ,公差為 ,
因?yàn)橐阎?,
可得 ,即
整理得, ①
又因?yàn)?,
當(dāng) 時(shí),
即, ②
①②聯(lián)立可得
由于
所以, .
(Ⅱ)解:由(Ⅰ)可得 ,且
將 帶入,可得
①
當(dāng) 時(shí),
當(dāng) 時(shí), ②
①-②可得
所以
兩式相減得
所以
21、解(1) ,
令 ,解得 ,令 ,解得
所以 的單調(diào)遞增區(qū)間為 ,單調(diào)遞減區(qū)間為 ,
的最大值為
(2)令 ,
①當(dāng) 時(shí)
,所以
在 時(shí),函數(shù) 的值域?yàn)?,函數(shù) 的值域?yàn)?,所以在 上,恒有 ,即 ,所以 對(duì)任意 大于零恒成立,所以 在 上單調(diào)遞增;
②當(dāng) 時(shí),
,所以 ,顯然在 時(shí)有函數(shù) 恒成立,所以函數(shù) 在 時(shí)恒成立,所以 對(duì)任意 恒成立,所以 在 上單調(diào)遞減;
由①②得,函數(shù) 在 上單調(diào)遞增,在 上單調(diào)遞減,所以 的最大值為
當(dāng) ,即 時(shí),方程 有且只有一個(gè)根;
當(dāng) ,即 時(shí),方程 有兩個(gè)不等的根;
當(dāng) ,即 時(shí),方程 沒有根。
22、解答
(1)由已知的 ,且 ,解得
所以橢圓的標(biāo)準(zhǔn)方程為
(2)設(shè) ,則 ,
在三角形 中,由正弦定理得
同理,在三角形 中,由正弦定理得
而且 ,所以
所以
本文來自:逍遙右腦記憶 http://www.portlandfoamroofing.com/gaosan/77451.html
相關(guān)閱讀:
上一篇:
2013年房山區(qū)高三數(shù)學(xué)文科一模試題(附答案)
下一篇:
2013年高考理科數(shù)學(xué)考前模擬試題(重慶市帶答案)
相關(guān)主題
相關(guān)推薦
推薦閱讀
2013高三理科上冊(cè)數(shù)學(xué)期中試卷(帶答案)
2012-2013學(xué)年度第一學(xué)期 高三級(jí)數(shù)學(xué)科(理科)期中考試試卷 本試卷分和非兩部分,共10頁,……
2013年高三數(shù)學(xué)二模理科試卷(徐匯區(qū)含答
高三年級(jí)第二學(xué)期徐匯區(qū)數(shù)學(xué)學(xué)科 學(xué)習(xí)能力診斷卷 (理科試卷) (考試時(shí)間:120分鐘,滿分1……
山東省2013年高考數(shù)學(xué)試卷(理)
絕密★啟用并使用完畢前 2013年普通高等學(xué)校招生全國統(tǒng)一考試(山東卷) 理科數(shù)學(xué) 本試卷分第……
高三數(shù)學(xué)計(jì)數(shù)原理、概率、隨機(jī)變量及其分
2013屆高三數(shù)學(xué)章末綜合測(cè)試題(20) 計(jì)數(shù)原理、概率、隨機(jī)變量及其分布 一、選擇題(本大題……
2013年高考文科數(shù)學(xué)試題(北京市)
絕密★啟用并使用完畢 2013年普通高等學(xué)校招生全國統(tǒng)一考試(北京卷) 數(shù)學(xué)(文) 本試卷共5……
相關(guān)閱讀
2013屆高三數(shù)學(xué)導(dǎo)數(shù)及其應(yīng)用檢測(cè)題(附答
2013年高考數(shù)學(xué)文科考前模擬試題(重慶市
2013年高三數(shù)學(xué)第三次調(diào)研試卷(南通市有
2013年高三數(shù)學(xué)理科一模試題(東城區(qū)帶答
2013四川省普通高等學(xué)校招生全國統(tǒng)一考試
2013年高三理科數(shù)學(xué)二診試題(甘肅附答案
2013年高考理科數(shù)學(xué)考前模擬試題(重慶市
2013屆高考數(shù)學(xué)拋物線復(fù)習(xí)課件和測(cè)試題(
2013年各地名校高考數(shù)學(xué)文科三角函數(shù)試題
2013高三文科數(shù)學(xué)二模試卷(南寧市含答案)
右腦記憶論壇
|
快速記憶法
|
記憶力培訓(xùn)
|
速讀培訓(xùn)
|
速讀軟件
Copyright(C) 2006-2014
逍遙右腦
All Rights Reserved