逍遙右腦記憶網(wǎng)-免費(fèi)提供各種記憶力訓(xùn)練學(xué)習(xí)方法!
超右腦
|
催眠術(shù)
|
潛能開(kāi)發(fā)
|
影像閱讀
|
右腦開(kāi)發(fā)訓(xùn)練
|
網(wǎng)站地圖
記憶方法
右腦開(kāi)發(fā)
快速閱讀
思維導(dǎo)圖
學(xué)習(xí)方法
學(xué)習(xí)計(jì)劃
作文大全
早期教育
勵(lì)志名言
右腦記憶
記憶法
|
記憶宮殿
|
記憶力訓(xùn)練
記憶術(shù)
|
最強(qiáng)大腦
|
右腦記憶法
學(xué)習(xí)方法
高中學(xué)習(xí)方法
|
高考
|
小學(xué)資源
|
單詞記憶
初中學(xué)習(xí)方法
|
中考
|
教案設(shè)計(jì)
|
試題中心
潛能成功
吸引力法則
|
成功學(xué)
|
九型人格
注意力訓(xùn)練
|
潛意識(shí)
|
思維模式
高中學(xué)習(xí)方法
高中語(yǔ)文
高中英語(yǔ)
高中數(shù)學(xué)
高中物理
高中化學(xué)
高中生物
高中政治
高中歷史
高中地理
高中教案
高中試題
高一學(xué)習(xí)方法
高一語(yǔ)文
高一數(shù)學(xué)
高一英語(yǔ)
高一物理
高一化學(xué)
高一生物
高一政治
高一歷史
高一地理
高一學(xué)習(xí)
高二學(xué)習(xí)方法
高二語(yǔ)文
高二數(shù)學(xué)
高二英語(yǔ)
高二物理
高二化學(xué)
高二生物
高二政治
高二歷史
高二地理
高二學(xué)習(xí)
高三學(xué)習(xí)方法
高三語(yǔ)文
高三數(shù)學(xué)
高三英語(yǔ)
高三物理
高三化學(xué)
高三生物
高三政治
高三歷史
高三地理
高三學(xué)習(xí)
逍遙右腦記憶
>
教案設(shè)計(jì)
>
數(shù)學(xué)
>
高二
>
古典概型及隨機(jī)數(shù)的產(chǎn)生
編輯:
逍遙路
關(guān)鍵詞:
高二
來(lái)源:
高中學(xué)習(xí)網(wǎng)
3.2.2古典概型及隨機(jī)數(shù)的產(chǎn)生
一、目標(biāo):
1、知識(shí)與技能:(1)正確理解古典概型的兩大特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等;
(2)掌握古典概型的概率計(jì)算公式:P(A)=
(3)了解隨機(jī)數(shù)的概念;
(4)利用計(jì)算機(jī)產(chǎn)生隨機(jī)數(shù),并能直接統(tǒng)計(jì)出頻數(shù)與頻率。
二、重點(diǎn)與難點(diǎn):1、正確理解掌握古典概型及其概率公式;
2、正確理解隨機(jī)數(shù)的概念,并能應(yīng)用計(jì)算機(jī)產(chǎn)生隨機(jī)數(shù).
三、學(xué)法與用具:1、與學(xué)生共同探討,應(yīng)用數(shù)學(xué)解決現(xiàn)實(shí)問(wèn)題;2、通過(guò)模擬試驗(yàn),感知應(yīng)用數(shù)字解決問(wèn)題的方法,自覺(jué)養(yǎng)成動(dòng)手、動(dòng)腦的良好習(xí)慣.
四、教學(xué)過(guò)程:
1、創(chuàng)設(shè)情境:(1)擲一枚質(zhì)地均勻的硬幣,結(jié)果只有2個(gè),即“正面朝上”或“反面朝上”,它們都是隨機(jī)事件。
(2)一個(gè)盒子中有10個(gè)完全相同的球,分別標(biāo)以號(hào)碼1,2,3,…,10,從中任取一球,只有10種不同的結(jié)果,即標(biāo)號(hào)為1,2,3…,10。
師生共同探討:根據(jù)上述情況,你能發(fā)現(xiàn)它們有什么共同特點(diǎn)?
2、基本概念:
(1)基本事件、古典概率模型、隨機(jī)數(shù)、偽隨機(jī)數(shù)的概念見(jiàn)課本P121~126;
(2)古典概型的概率計(jì)算公式:P(A)= .
3、例題分析:
例1 擲一顆骰子,觀察擲出的點(diǎn)數(shù),求擲得奇數(shù)點(diǎn)的概率。
分析:擲骰子有6個(gè)基本事件,具有有限性和等可能性,因此是古典概型。
解:這個(gè)試驗(yàn)的基本事件共有6個(gè),即(出現(xiàn)1點(diǎn))、(出現(xiàn)2點(diǎn))……、(出現(xiàn)6點(diǎn))
所以基本事件數(shù)n=6,事件A=(擲得奇數(shù)點(diǎn))=(出現(xiàn)1點(diǎn),出現(xiàn)3點(diǎn),出現(xiàn)5點(diǎn)),
其包含的基本事件數(shù)m=3
所以,P(A)= = = =0.5
例2 從含有兩件正品a1,a2和一件次品b1的三件產(chǎn)品中,每次任取一件,每次取出后不放回,連續(xù)取兩次,求取出的兩件產(chǎn)品中恰有一件次品的概率。
解:每次取出一個(gè),取后不放回地連續(xù)取兩次,其一切可能的結(jié)果組成的基本事件有6個(gè),即(a1,a2)和,(a1,b2),(a2,a1),(a2,b1),(b1,a1),(b2,a2)。其中小括號(hào)內(nèi)左邊的字母表示第1次取出的產(chǎn)品,右邊的字母表示第2次取出的產(chǎn)用A表示“取出的兩種中,恰好有一件次品”這一事件,則A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)]
事件A由4個(gè)基本事件組成,因而,P(A)= = 。
例3 現(xiàn)有一批產(chǎn)品共有10件,其中8件為正品,2件為次品:
(1)如果從中取出一件,然后放回,再取一件,求連續(xù)3次取出的都是正品的概率;
(2)如果從中一次取3件,求3件都是正品的概率.
分析:(1)為返回抽樣;(2)為不返回抽樣.
解:(1)有放回地抽取3次,按抽取順序(x,y,z)記錄結(jié)果,則x,y,z都有10種可能,所以試驗(yàn)結(jié)果有10×10×10=103種;設(shè)事件A為“連續(xù)3次都取正品”,則包含的基本事件共有8×8×8=83種,因此,P(A)= =0.512.
(2)解法1:可以看作不放回抽樣3次,順序不同,基本事件不同,按抽取順序記錄(x,y,z),則x有10種可能,y有9種可能,z有8種可能,所以試驗(yàn)的所有結(jié)果為10×9×8=720種.設(shè)事件B為“3件都是正品”,則事件B包含的基本事件總數(shù)為8×7×6=336, 所以P(B)= ≈0.467.
解法2:可以看作不放回3次無(wú)順序抽樣,先按抽取順序(x,y,z)記錄結(jié)果,則x有10種可能,y有9種可能,z有8種可能,但(x,y,z),(x,z,y),(y,x,z),(y,z,x),(z,x,y),(z,y,x),是相同的,所以試驗(yàn)的所有結(jié)果有10×9×8÷6=120,按同樣的方法,事件B包含的基本事件個(gè)數(shù)為8×7×6÷6=56,因此P(B)= ≈0.467.
例4 利用計(jì)算器產(chǎn)生10個(gè)1~100之間的取整數(shù)值的隨機(jī)數(shù)。
解:具體操作如下:
鍵入
反復(fù)操作10次即可得之
例5 某籃球愛(ài)好者,做投籃練習(xí),假設(shè)其每次投籃命中的概率是40%,那么在連續(xù)三次投籃中,恰有兩次投中的概率是多少?
分析:其投籃的可能結(jié)果有有限個(gè),但是每個(gè)結(jié)果的出現(xiàn)不是等可能的,所以不能用古典概型的概率公式計(jì)算,我們用計(jì)算機(jī)或計(jì)算器做模擬試驗(yàn)可以模擬投籃命中的概率為40%。
解:我們通過(guò)設(shè)計(jì)模擬試驗(yàn)的方法來(lái)解決問(wèn)題,利用計(jì)算機(jī)或計(jì)算器可以生產(chǎn)0到9之間的取整數(shù)值的隨機(jī)數(shù)。
我們用1,2,3,4表示投中,用5,6,7,8,9,0表示未投中,這樣可以體現(xiàn)投中的概率是40%。因?yàn)槭峭痘@三次,所以每三個(gè)隨機(jī)數(shù)作為一組。
例如:產(chǎn)生20組隨機(jī)數(shù):
812,932,569,683,271,989,730,537,925,
907,113,966,191,431,257,393,027,556.
這就相當(dāng)于做了20次試驗(yàn),在這組數(shù)中,如果恰有兩個(gè)數(shù)在1,2,3,4中,則表示恰有兩次投中,它們分別是812,932,271,191,393,即共有5個(gè)數(shù),我們得到了三次投籃中恰有兩次投中的概率近似為 =25%。
例6 你還知道哪些產(chǎn)生隨機(jī)數(shù)的函數(shù)?請(qǐng)列舉出來(lái)。
解:(1)每次按SHIFT RNA# 鍵都會(huì)產(chǎn)生一個(gè)0~1之間的隨機(jī)數(shù),而且出現(xiàn)0~1內(nèi)任何一個(gè)數(shù)的可能性是相同的。
(2)還可以使用計(jì)算機(jī)軟件來(lái)產(chǎn)生隨機(jī)數(shù),如Scilab中產(chǎn)生隨機(jī)數(shù)的方法。Scilab中用rand()函數(shù)來(lái)產(chǎn)生0~1之間的隨機(jī)數(shù),每周用一次rand()函數(shù),就產(chǎn)生一個(gè)隨機(jī)數(shù),如果要產(chǎn)生a~b之間的隨機(jī)數(shù),可以使用變換rand()*(b-a)+a得到.
4、課堂小結(jié):本節(jié)主要研究了古典概型的概率求法,解題時(shí)要注意兩點(diǎn):
(1)古典概型的使用條件:試驗(yàn)結(jié)果的有限性和所有結(jié)果的等可能性。
(2)古典概型的解題步驟;
①求出總的基本事件數(shù);
②求出事件A所包含的基本事件數(shù),然后利用公式P(A)=
(3)隨機(jī)數(shù)量具有廣泛的應(yīng)用,可以幫助我們安排和模擬一些試驗(yàn),這樣可以代替我們自己做大量重復(fù)試驗(yàn),比如現(xiàn)在很多城市的重要考試采用產(chǎn)生隨機(jī)數(shù)的方法把考生分配到各個(gè)考場(chǎng)中。
5課堂練習(xí):
1.在40根纖維中,有12根的長(zhǎng)度超過(guò)30mm,從中任取一根,取到長(zhǎng)度超過(guò)30mm的纖維的概率是( )
A. B. C. D.以上都不對(duì)
2.盒中有10個(gè)鐵釘,其中8個(gè)是合格的,2個(gè)是不合格的,從中任取一個(gè)恰為合格鐵釘?shù)母怕适?br>A. B. C. D.
3.在大小相同的5個(gè)球中,2個(gè)是紅球,3個(gè)是白球,若從中任取2個(gè),則所取的2個(gè)球中至少有一個(gè)紅球的概率是 。
4.拋擲2顆質(zhì)地均勻的骰子,求點(diǎn)數(shù)和為8的概率。
5.利用計(jì)算器生產(chǎn)10個(gè)1到20之間的取整數(shù)值的隨機(jī)數(shù)。
6.用0表示反面朝上,1表正面朝上,請(qǐng)用計(jì)算器做模擬擲硬幣試驗(yàn)。
6、課堂練習(xí)答案:
1.B[提示:在40根纖維中,有12根的長(zhǎng)度超過(guò)30mm,即基本事件總數(shù)為40,且它們是等可能發(fā)生的,所求事件包含12個(gè)基本事件,故所求事件的概率為 ,因此選B.]
2.C[提示:(方法1)從盒中任取一個(gè)鐵釘包含基本事件總數(shù)為10,其中抽到合格鐵訂(記為事件A)包含8個(gè)基本事件,所以,所求概率為P(A)= = .(方法2)本題還可以用對(duì)立事件的概率公式求解,因?yàn)閺暮兄腥稳∫粋(gè)鐵釘,取到合格品(記為事件A)與取到不合格品(記為事件B)恰為對(duì)立事件,因此,P(A)=1-P(B)=1- = .]
3. [提示;記大小相同的5個(gè)球分別為紅1,紅2,白1,白2,白3,則基本事件為:(紅1,紅2),(紅1,白1),(紅1,白2)(紅1,白3),(紅2,白3),共10個(gè),其中至少有一個(gè)紅球的事件包括7個(gè)基本事件,所以,所求事件的概率為 .本題還可以利用“對(duì)立事件的概率和為1”來(lái)求解,對(duì)于求“至多”“至少”等事件的概率頭問(wèn)題,常采用間接法,即求其對(duì)立事件的概率P(A),然后利用P(A)1-P(A)求解]。
4.解:在拋擲2顆骰子的試驗(yàn)中,每顆骰子均可出現(xiàn)1點(diǎn),2點(diǎn),…,6點(diǎn)6種不同的結(jié)果,我們把兩顆骰子標(biāo)上記號(hào)1,2以便區(qū)分,由于1號(hào)骰子的一個(gè)結(jié)果,因此同時(shí)擲兩顆骰子的結(jié)果共有6×6=36種,在上面的所有結(jié)果中,向上的點(diǎn)數(shù)之和為8的結(jié)果有(2,6),(3,5),(4,4),(5,3),(6,2)5種,所以,所求事件的概率為 .
5.解:具體操作如下
鍵入
反復(fù)按 鍵10次即可得到。
6.解:具體操作如下:
鍵入
7、作業(yè):根據(jù)情況安排
8板書(shū)設(shè)計(jì):
3.2.2古典概型及隨機(jī)數(shù)的產(chǎn)生
基本概念: 例3 例5
3.2.2古典概型及隨機(jī)數(shù)的產(chǎn)生
課前預(yù)習(xí)學(xué)案
一、預(yù)習(xí)目標(biāo):
1、正確理解古典概型的兩大特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等;
2、掌握古典概型的概率計(jì)算公式:P(A)=
3、了解隨機(jī)數(shù)的概念;
二、預(yù)習(xí)內(nèi)容:1、基本事件
2、古典概率模型
3、隨機(jī)數(shù)
4、偽隨機(jī)數(shù)的概念
5、古典概型的概率計(jì)算公式:P(A)= .
三、提出疑惑
同學(xué)們,通過(guò)你的自主學(xué)習(xí),你還有哪些疑惑,請(qǐng)把它填在下面的表格中
疑惑點(diǎn)疑惑內(nèi)容
課內(nèi)探究學(xué)案
一、學(xué)習(xí)目標(biāo):(1)正確理解古典概型的兩大特點(diǎn)
(2)掌握古典概型的概率計(jì)算公式:P(A)=
(3)了解隨機(jī)數(shù)的概念
二、重點(diǎn)與難點(diǎn):1、正確理解掌握古典概型及其概率公式;
2、正確理解隨機(jī)數(shù)的概念,并能應(yīng)用計(jì)算機(jī)產(chǎn)生隨機(jī)數(shù).
三、學(xué)習(xí)過(guò)程:
1、創(chuàng)設(shè)情境:(1)擲一枚質(zhì)地均勻的硬幣,結(jié)果只有2個(gè),即“正面朝上”或“反面朝上”,它們都是隨機(jī)事件。
(2)一個(gè)盒子中有10個(gè)完全相同的球,分別標(biāo)以號(hào)碼1,2,3,…,10,從中任取一球,只有10種不同的結(jié)果,即標(biāo)號(hào)為1,2,3…,10。
根據(jù)上述情況,你能發(fā)現(xiàn)它們有什么共同特點(diǎn)?
2、例題:
例1 擲一顆骰子,觀察擲出的點(diǎn)數(shù),求擲得奇數(shù)點(diǎn)的概率。
解:
例2 從含有兩件正品a1,a2和一件次品b1的三件產(chǎn)品中,每次任取一件,每次取出后不放回,連續(xù)取兩次,求取出的兩件產(chǎn)品中恰有一件次品的概率。
解:
例3 現(xiàn)有一批產(chǎn)品共有10件,其中8件為正品,2件為次品:
(1)如果從中取出一件,然后放回,再取一件,求連續(xù)3次取出的都是正品的概率;
(2)如果從中一次取3件,求3件都是正品的概率.
解:
例4 利用計(jì)算器產(chǎn)生10個(gè)1~100之間的取整數(shù)值的隨機(jī)數(shù)。
解
例5 某籃球愛(ài)好者,做投籃練習(xí),假設(shè)其每次投籃命中的概率是40%,那么在連續(xù)三次投籃中,恰有兩次投中的概率是多少?
解:
例6 你還知道哪些產(chǎn)生隨機(jī)數(shù)的函數(shù)?請(qǐng)列舉出來(lái)。
解:
3、反思總結(jié)
(1)、數(shù)學(xué)知識(shí):
(2)、數(shù)學(xué)思想方法:
4、當(dāng)堂檢測(cè):
一、選擇題
1.在40根纖維中,有12根的長(zhǎng)度超過(guò)30mm,從中任取一根,取到長(zhǎng)度超過(guò)30mm的纖維的概率是( )
A. B. C. D.以上都不對(duì)
2.盒中有10個(gè)鐵釘,其中8個(gè)是合格的,2個(gè)是不合格的,從中任取一個(gè)恰為合格鐵釘?shù)母怕适?br>A. B. C. D.
3將骰子拋2次,其中向上的數(shù)之和是5的概率是( )
A、 B、 C、 D、9
二、填空題
4在大小相同的5個(gè)球中,2個(gè)是紅球,3個(gè)是白球,若從中任取2個(gè),則所取的2個(gè)球中至少有一個(gè)紅球的概率是 。
5.拋擲2顆質(zhì)地均勻的骰子,則點(diǎn)數(shù)和為8的概率為 。
三、解答題
6.用0表示反面朝上,1表正面朝上,請(qǐng)用計(jì)算器做模擬擲硬幣試驗(yàn)。
答案:1.B[提示:在40根纖維中,有12根的長(zhǎng)度超過(guò)30mm,即基本事件總數(shù)為40,且它們是等可能發(fā)生的,所求事件包含12個(gè)基本事件,故所求事件的概率為 ,因此選B.]
2.C[提示:(方法1)從盒中任取一個(gè)鐵釘包含基本事件總數(shù)為10,其中抽到合格鐵訂(記為事件A)包含8個(gè)基本事件,所以,所求概率為P(A)= = .(方法2)本題還可以用對(duì)立事件的概率公式求解,因?yàn)閺暮兄腥稳∫粋(gè)鐵釘,取到合格品(記為事件A)與取到不合格品(記為事件B)恰為對(duì)立事件,因此,P(A)=1-P(B)=1- = .]
3A
4. [提示;記大小相同的5個(gè)球分別為紅1,紅2,白1,白2,白3,則基本事件為:(紅1,紅2),(紅1,白1),(紅1,白2)(紅1,白3),(紅2,白3),共10個(gè),其中至少有一個(gè)紅球的事件包括7個(gè)基本事件,所以,所求事件的概率為 .本題還可以利用“對(duì)立事件的概率和為1”來(lái)求解,對(duì)于求“至多”“至少”等事件的概率頭問(wèn)題,常采用間接法,即求其對(duì)立事件的概率P(A),然后利用P(A)1-P(A)求解]。
5.解:在拋擲2顆骰子的試驗(yàn)中,每顆骰子均可出現(xiàn)1點(diǎn),2點(diǎn),…,6點(diǎn)6種不同的結(jié)果,我們把兩顆骰子標(biāo)上記號(hào)1,2以便區(qū)分,由于1號(hào)骰子的一個(gè)結(jié)果,因此同時(shí)擲兩顆骰子的結(jié)果共有6×6=36種,在上面的所有結(jié)果中,向上的點(diǎn)數(shù)之和為8的結(jié)果有(2,6),(3,5),(4,4),(5,3),(6,2)5種,所以,所求事件的概率為 .
6.解:具體操作如下:
鍵入
課后練習(xí)與提高
一、選擇題
1、從長(zhǎng)度為1,3,5,7,9五條線段中任取三條能構(gòu)成三角形的概率是( )
A、 B、 C、 D、
2、將8個(gè)參賽隊(duì)伍通過(guò)抽簽分成A、B兩組,每組4隊(duì),其中甲、乙兩隊(duì)恰好不在同組的概率為( )
A、 B、 C、 D、
3、袋中有白球5只,黑球6只,連續(xù)取出3只球,則順序?yàn)椤昂诎缀凇钡母怕蕿? )
A、 B、 C、 D、
二、填空題
4、接連三次擲一硬幣,正反面輪流出現(xiàn)的概率等于 ,
5、在100個(gè)產(chǎn)品中,有10個(gè)是次品,若從這100個(gè)產(chǎn)品中任取5個(gè),其中恰有2個(gè)次品的概率等于 。
三、解答題
6在第1,3,5,8路公共汽車都要?康囊粋(gè)站(假定這個(gè)站只能?恳惠v汽車),有1位乘客等候第1路或第3路汽車、假定當(dāng)時(shí)各路汽車首先到站的可能性相等,求首先到站正好是這位乘客所要乘的汽車的概率、
答案
一、選擇題
1、B 2、A 3、D
二、填空題
4、
5、
三解答題解:記“首先到站的汽車正好是這位乘客所要乘的汽車”為事件A,則事件A的概率P(A)=
答:首先到站正好是這位乘客所要乘的汽車的概率為
本文來(lái)自:逍遙右腦記憶 http://www.portlandfoamroofing.com/gaoer/78294.html
相關(guān)閱讀:
古典概型及隨機(jī)數(shù)的產(chǎn)生
上一篇:
高二數(shù)學(xué)數(shù)列小結(jié)
下一篇:
單調(diào)性學(xué)案練習(xí)題
相關(guān)主題
古典概型及隨機(jī)數(shù)的產(chǎn)生
相關(guān)推薦
推薦閱讀
幾何概型及均勻隨機(jī)數(shù)的產(chǎn)生
3.3.2幾何概型及均勻隨機(jī)數(shù)的產(chǎn)生 一、教材分析 1.幾何概型是不同于古典概型的又一個(gè)最基本……
圓的參數(shù)方程學(xué)案
第02時(shí) 2.1.2圓的參數(shù)方程 學(xué)習(xí)目標(biāo) 1.通過(guò)求做勻速圓周運(yùn)動(dòng)的質(zhì)點(diǎn)的參數(shù)方程,掌握求一般……
導(dǎo)數(shù)與函數(shù)的單調(diào)性
3.1.1 導(dǎo)數(shù)與函數(shù)的單調(diào)性 過(guò)程: 一.創(chuàng)設(shè)情景 函數(shù)是客觀描述世界變化規(guī)律的重要數(shù)學(xué)模型……
等差數(shù)列
課時(shí)15 2.2.2等差數(shù)列的通項(xiàng)公式(1) 【學(xué)習(xí)目標(biāo)】 1.理解等差中項(xiàng)的概念,能應(yīng)用等差中項(xiàng)……
輸入出語(yǔ)句和賦值語(yǔ)句
1.2.1輸入、輸出語(yǔ)句和賦值語(yǔ)句 目標(biāo): 知識(shí)與技能 (1)正確理解輸入語(yǔ)句、輸出語(yǔ)句、賦值……
相關(guān)閱讀
算術(shù)平均數(shù)與幾何平均數(shù)
2.5 簡(jiǎn)單復(fù)合函數(shù)的求導(dǎo)法則
輸入出語(yǔ)句和賦值語(yǔ)句
曲線的參數(shù)方程
新人教A版選修2-32.1離散型隨機(jī)變量及其
圓錐曲線學(xué)案練習(xí)題
高二數(shù)學(xué)計(jì)數(shù)原理復(fù)習(xí)學(xué)案
2.4正態(tài)分布教案(新人教A版選修2-3)
遞推數(shù)列中的通項(xiàng)公式
圓錐曲線
右腦記憶論壇
|
快速記憶法
|
記憶力培訓(xùn)
|
速讀培訓(xùn)
|
速讀軟件
Copyright(C) 2006-2014
逍遙右腦
All Rights Reserved