逍遙右腦記憶網(wǎng)-免費提供各種記憶力訓練學習方法!
超右腦
|
催眠術
|
潛能開發(fā)
|
影像閱讀
|
右腦開發(fā)訓練
|
網(wǎng)站地圖
記憶方法
右腦開發(fā)
快速閱讀
思維導圖
學習方法
學習計劃
作文大全
早期教育
勵志名言
右腦記憶
記憶法
|
記憶宮殿
|
記憶力訓練
記憶術
|
最強大腦
|
右腦記憶法
學習方法
高中學習方法
|
高考
|
小學資源
|
單詞記憶
初中學習方法
|
中考
|
教案設計
|
試題中心
潛能成功
吸引力法則
|
成功學
|
九型人格
注意力訓練
|
潛意識
|
思維模式
初中學習方法
初中語文
初中英語
初中數(shù)學
初中物理
初中化學
初中生物
初中政治
初中歷史
初中地理
中考學習網(wǎng)
初一學習方法
初一語文
初一數(shù)學
初一英語
初一生物
初一政治
初一歷史
初一地理
初二物理
初一學習
初中教案
初二學習方法
初二語文
初二數(shù)學
初二英語
初二生物
初二政治
初二歷史
初二地理
初三物理
初二學習
初中試題
初三學習方法
初三語文
初三數(shù)學
初三英語
初三生物
初三政治
初三歷史
初三地理
初三化學
初三學習
初中作文
逍遙右腦記憶
>
教案設計
>
數(shù)學
>
八年級
>
2012年蘇科版八年級數(shù)學下冊期末復習學案
編輯:
逍遙路
關鍵詞:
八年級
來源:
高中學習網(wǎng)
M
2012年蘇科版八年級數(shù)學下冊期末復習學案
班級 姓名 學號
一、知識回顧
1.命題與證明
2.平行線性質(zhì)定理與判定定理
3.三角形內(nèi)角和定理及推論
4.等腰三角形的性質(zhì)定理和判定定理
5.等邊三角形的性質(zhì)定理和判定定理
6.直角三角形的性質(zhì)定理和判定定理
二、例題講解
例1.如圖,直線AB,CD分別與直線AC相交于點A,C,與直線BD相交于點B,D.若∠1=∠2,∠3=75°,求∠4的度數(shù).
例2.如圖,△AOB和△COD均為等腰直角三角形,∠AOB=∠COD=90°,D在AB上。
(1)求證:△AOC≌△BOD;
(2)若AD=1,BD=2,求CD的長。
例3.如圖,等邊△ABC中,AO是∠BAC的角平分線,D為AO上一點,以CD為一邊且在CD下方作等邊△CDE,連結(jié)BE.
(1) 求證:△ACD≌△BCE;
(2) 延長BE至Q, P為BQ上一點,連結(jié)CP、CQ使CP=CQ=5, 若BC=8時,求PQ的長.
例4.如圖,點D,E在△ABC的邊BC上,連接AD,AE. ①AB=AC;②AD=AE;③BD=CE.以此三個等式中的兩個作為命題的題設,另一個作為命題的結(jié)論,構(gòu)成三個命題:①② ③;①③ ②;②③ ①.
(1)以上三個命題是真命題的為(直接作答)
(2)請選擇一個真命題進行證明(先寫出所選命題,然后證明).
例5.如圖,△ABC中,AB=AC,AD、AE分別是∠BAC和∠BAC和外角的平分線,BE⊥AE.
(1)求證:DA⊥AE;
(2)試判斷AB與DE是否相等?并證明你的結(jié)論.
三、隨堂練習
1.如圖,直線l1∥l2, ∠1=40°,∠2=75°,則∠3等于 ( )
A.55° B .60° C.65° D .70°
2.如果一個等腰三角形的兩邊長分別是5cm和6cm,那么此三角形的周長是 ( 。
A.15cm B.16cm C.17cm D.16cm或17cm
3.如圖,邊長為4的等邊△ABC中,DE為中位線,則四邊形BCED的面積為 ( 。
A. B. C. D.
4.矩形的一內(nèi)角平分線把矩形的一條邊分成3和5兩部分,則該矩形的周長是 ( )
A. 16 B. 22 C. 26 D. 22或26
5.平行四邊形內(nèi)角平分線能夠圍成的四邊形是 ( )
A.梯形 B.矩形 C.正方形 D.不是平行四邊形
6.正方形具有而菱形不具有的性質(zhì)是 ( )
A.對角線互相平分;B.對角線相等;C.對角線互相垂直;D.對角線平分對角。
1
7.寫出命題“同角的余角相等”的條件: ,結(jié)論: .
8.寫出命題“直角三角形斜邊上的中線等于斜邊的一半”的逆命題: ,它是 命題(填“真”或“假”).
9.邊長為6cm的等邊三角形中,其一邊上高的長度為________,面積是________.
10.在等腰Rt△ABC中,∠C=90°,AC=1,過點C作直線l∥AB,F(xiàn)是l上的一點,且AB=AF,則點F到直線BC的距離為 .
11.在平面直角坐標系xOy中,已知點P(2,2),點Q在y軸上,△PQO是等腰三角形,則滿足條件的點Q的坐標為________________________.
12.若等腰梯形的周長為80cm, 高為12cm,中位線長與腰長相等, 則它的面積為____________cm2.
13.已知等邊△ABC中,點D,E分別在邊AB,BC上,把△BDE沿直線DE翻折,使點B落在點B?處,DB?,EB?分別交邊AC于點F,G,若∠ADF=80 ,則∠EGC的度數(shù)為 .
14.將邊長為8cm的正方形紙片ABCD折疊,使點D落在BC邊中點E處,點A落在點F處,折痕為MN,則線段CN的長是 .
13 14
15.已知三條不同的直線a,b,c在同一平面內(nèi),下列四個命題:
①如果a∥b,a⊥c,那么b⊥c; ②如果b∥a,c∥a,那么b∥c;
③如果b⊥a,c⊥a,那么b⊥c;、苋绻鸼⊥a,c⊥a,那么b∥c.
其中真命題的是 。ㄌ顚懰姓婷}的序號)
16.在菱形 中,對角線 與 相交于點 , .過點 作 交 的延長線于點 .
(1)求 的周長;
(2)點 為線段 上的點,連接 并延長交 于點 .
求證: .
17. 如圖,在正方形ABCD中,△PBC、△QCD是兩個等邊三角形,PB與DQ交于M,BP與CQ交于E,CP與DQ交于F.求證:PM = QM.
四、課后作業(yè)
1.如圖,平行四邊形ABCD中,EF為邊AD、BC上的點,且AE=CF,連結(jié)AF、EC、BE、DF交于M、N,試判斷MF與NE的關系并證明你的結(jié)論.
2.如圖,在△ABC中,D是BC邊的中點,E、F分別在AD及其延長線上, CE∥BF,連接BE、CF.
(1)求證:△BDF≌△CDE;
(2)若AB=AC,求證:四邊形BFCE是菱形.
3.如圖,等腰梯形ABCD中,AD∥BC,點M,N分別是AD、BC邊的中點,點E、F分別是BM、CM的中點,若要使四邊形EMFN是正方形,MN與BC需滿足怎樣的關系?寫出這一關系并證明。
4.如圖1,在等腰梯形 中, , 是 的中點,過點 作 交 于點 . , .
(1)求點 到 的距離;
(2)點 為線段 上的一個動點,過 作 交 于點 ,過 作 交折線 于點 ,連結(jié) ,設 .
①當點 在線段 上時(如圖2), 的形狀是否發(fā)生改變?若不變,求出 的周長;若改變,請說明理由;
②當點 在線段 上時(如圖3),是否存在點 ,使 為等腰三角形?若存在,請求出所有滿足要求的 的值;若不存在,請說明理由.
本文來自:逍遙右腦記憶 http://www.portlandfoamroofing.com/chuer/80000.html
相關閱讀:
上一篇:
初二數(shù)學上冊第12章軸對稱教案
下一篇:沒有了
相關主題
相關推薦
最新主題
2012年蘇科版八年級數(shù)學下冊期末復習學案
M 2012年蘇科版八年級數(shù)學下冊期末復習學案 班級 姓名 學號 一、知識回顧 1.命題與證明 2.……
初二數(shù)學上冊第12章軸對稱教案
第十二章 軸對稱 教學目標: 1、通過生活中的具體實例認識軸對稱,讓學生掌握軸對稱圖形和……
簡單的旋轉(zhuǎn)作圖
第三章 圖形的平移與旋轉(zhuǎn) 總課時:7課時 使用人: 備課時間:第四周 上課時間:第五周 第5……
完美的正方形
第十六講 完美的正方形 有一組鄰邊相等并且有一個角是直角的平行四邊形是正方形,換句話說……
第一章軸對稱圖形小結(jié)與思考學案
學習目標: 1、理解軸對稱與軸對稱圖形的概念,掌握軸對稱的性質(zhì)及畫軸對稱圖形的步驟,會設……
相關閱讀
初二數(shù)學下冊第17章反比例函數(shù)期末復習教
等腰三角形的性質(zhì)
能得到直角三角形嗎
數(shù)據(jù)的波動
平行四邊形的性質(zhì)一導學案
矩形、正方形1
軸對稱導學案
蘇科版第7章一元一次不等式期中復習導學
有理數(shù)的混合運算
勾股定理的應用導學案
右腦記憶論壇
|
快速記憶法
|
記憶力培訓
|
速讀培訓
|
速讀軟件
|
右腦圖卡
Copyright(C) 2006-2014
逍遙右腦
All Rights Reserved