東城區(qū)普通校2012-2013學(xué)年第一學(xué)期聯(lián)考試卷 初三數(shù)學(xué) 命題校:國子監(jiān)中學(xué) 2012年11月 本試卷分第Ⅰ卷()和第Ⅱ卷(非)兩部分,共120分,考試用時120 分鐘。考試結(jié)束后,將本試卷和答題卡一并交回。祝各位考生考試順利!第Ⅰ卷一、選擇題:(本大題共8小題,每小題4分,共32分)1.在下列四個圖案中,既是軸對稱圖形,又是中心對稱圖形的是
2. 袋子中有兩個同樣大小的4個小球,其中3個紅球,1個白球,從袋中任意地同時摸出一個小球,則摸到白球概率是( ) A、 B、 C、 D、3.將拋物線的圖象先向右平移2個單位,再向上平移3個單位后,得到的拋物線的解析式是 A. B. C. D.
4.已知兩圓的半徑分別為7和1,當(dāng)它們外切時,圓心距為( 。 A.6 B.7 C.8 D.95.下列說法正確的是( ) ①平分弦的直徑,必平分弦所對的兩條。 ②圓的切線垂直于圓的半徑. ③三角形的外心到三角形的三個頂點(diǎn)的距離相等。 ④三點(diǎn)可以確定一個圓. A.4個 B.3個 C.2個 D.1個
6. 如圖,△BC中,∠B=90°,∠C=60°,B=,點(diǎn)A在 B上,以AB為直徑作⊙O與C相切于點(diǎn)D,則CD的長為 A. 2 B.3 C. D. 7.邊長為的正六邊形的邊心距等于( ) A. B. C. D.
8.如圖所示, 二次函數(shù) y = ax2 + bx + c (a 0) 的圖像經(jīng)過點(diǎn)(1, 2), 且與x軸交點(diǎn)的橫坐標(biāo)分別為x1, x2, 其中 2 < x1 < 1, 0 < x2 < 1, 下列結(jié)論⑴ 4a 2b + c < 0; ⑵ 2a b < 0; ⑶ a 3b > 0; ⑷ b2 + 8a < 4ac; 其中正確的有( ) A. 1個 B. 2個 C . 3個 D. 4個
第Ⅱ卷二、題:(本大題共4小題,每小題4分,共16分)9. 二次函數(shù)y=3 (x-1)(x+3)的對稱軸方程是______________.10.如圖3,在Rt△ABC中,∠C=90°,CA=CB=2。分別以A、B、C為圓心,以AC為半徑畫弧,三條弧與邊AB所圍成的陰影部分的面積是______.11.如圖,是一個半徑為6c,面積為c2的扇形紙片,現(xiàn)需要一個半徑為的圓形紙片,使兩張紙片剛好能組合成圓錐體,則等于 c12. 如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(-4,0),B(0,3),對△AOB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1)、(2)、(3)、(4)、…,則第(7)個三角形的直角頂點(diǎn)的坐標(biāo)是 。坏冢2011)個三角形的直角頂點(diǎn)的坐標(biāo)是__________.
三、解答題:(本大題共6小題,每小題5分,共30分)13. 用配方法將二次函數(shù)y=2x2-4x-6化為的形式(其中為常數(shù)),并寫出這個二次函數(shù)圖象的頂點(diǎn)坐標(biāo)和對稱軸.
14. 如圖8,方格紙中的每個小方格都是邊長為1個單位的正方形,Rt△ABC的頂點(diǎn)均在格點(diǎn)上,建立平面直角坐標(biāo)系后,點(diǎn)A的坐標(biāo)為(-4,1),點(diǎn)B的坐標(biāo)為(-1,1)(1)先將Rt△ABC向右平移5個單位,再向下平移1個單位后得到Rt△A1B1C1.試在圖中畫出圖形Rt△A1B1C1.,并寫出A1的坐標(biāo)。2)將Rt△A1B1C1.,繞點(diǎn)A1順時針旋轉(zhuǎn)90°后得到Rt△A2B2C2,試在圖中畫出圖形 Rt△A2B2C2,并計算Rt△A1B1C1在上述旋轉(zhuǎn)過程中C1.所經(jīng)過的路程.
??????15. 如圖,CD為⊙O的直徑,AB⊥CD于E, DE=8c,CE=2c,求AB的長.
16. 已知:二次函數(shù)y=ax2+bx+c中的x,y滿足下表:x…-10123…y…0-3-4-3…(1)的值為__________;(2)求這個二次函數(shù)的解析式.
17. 已知:如圖,△ABC的外接圓⊙O的直徑為4, ∠A=30°,求BC的長.
18. 學(xué)校獎勵給王偉和李麗上海世博園門票共兩張,其中一張為指定日門票,另一張為普通日門票。王偉和李麗分別轉(zhuǎn)動下圖的甲、乙
兩個轉(zhuǎn)盤(轉(zhuǎn)盤甲被二等分、轉(zhuǎn)盤乙被三等分)確定指定日門票的歸屬,在兩個轉(zhuǎn)盤都停止轉(zhuǎn)動后,若指針?biāo)傅膬蓚數(shù)字之和為偶數(shù),則王偉獲得指定日門票;若指針?biāo)傅膬蓚數(shù)字之和為奇數(shù),則李麗獲得指定日門票;若指針指向分隔線,則重新轉(zhuǎn)動。你認(rèn)為這個方法公平嗎?請畫樹狀圖或列表,并說明理由.
四、解答題:(本大題共4小題,每小題5分,共20分)19. 如圖,等腰直角△ABC中,∠ABC=90°,點(diǎn)D在AC上,將△ABD繞頂點(diǎn)B沿順時針方向旋轉(zhuǎn)90°后得到△CBE.、徘蟆螪CE的度數(shù); ⑵當(dāng)AB=4,AD∶DC=1∶3時,求DE的長. 20. 已知:二次函數(shù)的表達(dá)式為.。1)寫出這個函數(shù)圖象的對稱軸和頂點(diǎn)坐標(biāo);并畫出圖像。。2)求圖象與軸的交點(diǎn)坐標(biāo); (3)觀察圖象,指出使函數(shù)值y>時自變量x的取值范圍 21.如圖,點(diǎn)B、C、D都在⊙O上,過點(diǎn)C作AC∥BD交OB延長線于點(diǎn)A,連接CD,且∠CDB=∠OBD=30°,DB=6c.。1)求證:AC是⊙O的切線; (2)求⊙O的半徑長; (3)求由弦CD、BD與弧BC所圍成的陰影部分的面積 。ńY(jié)果保留). 22.已知,如圖,在四邊形ABCD中,∠B +∠D =180°,AB=AD,E、F分別是線段BC、CD上的點(diǎn),且B E + FD= EF。求證:∠EAF =∠BAD
五、解答題:(第23題、24題各7分,第25題8分,共22分)23.如圖,已知∠=90°,線段AB=10,若點(diǎn)A在上滑動,點(diǎn)B隨著線段AB在射線 上滑動,(A、B與O不重合),Rt△AOB的內(nèi)切⊙K分別與OA、OB、AB切于E、F、P.(1)在上述變化過程中:Rt△AOB的周長,⊙K的半徑,△AOB外接圓半徑,這幾個量中不會發(fā)生變化的是什么?并簡要說明理由; (2)當(dāng)AE = 4時,求⊙K的半徑r;
24. 已知:、n是方程x2-6x+5=0的兩個實(shí)數(shù)根,且<n,拋物線y=-x2+bx+c的圖像經(jīng)過點(diǎn)A(,0)、B(0,n). 。1)求這個拋物線的解析式;(2)設(shè)(1)中拋物線與軸的另一交點(diǎn)為C,拋物線的頂點(diǎn)為D,試求出點(diǎn)C、D的坐標(biāo)和△BCD的面積(3)P是線段OC上的一點(diǎn),過點(diǎn)P作PH⊥x軸,與拋物線交于H點(diǎn),若直線BC把△PCH分成面積之比為2∶3的兩部分,請求出P點(diǎn)的坐標(biāo).
25. 如圖9,若△ABC和△ADE為等邊三角形,,N分別EB,CD的中點(diǎn),易證:CD=BE,△AN是等邊三角形. (1)當(dāng)把△ADE繞A點(diǎn)旋轉(zhuǎn)到圖10的位置時,CD=BE是否仍然成立?若成立請證明,若不成立請說明理由; (2)當(dāng)△ADE繞A點(diǎn)旋轉(zhuǎn)到圖11的位置時,△AN是否還是等邊三角形?若是,請給出證明,并求出當(dāng)AB=2AD時,△ADE與△ABC及△AN的面積之比;若不是,請說明理由.東城區(qū)普通校2012-2013學(xué)年第一學(xué)期聯(lián)考試卷 初三數(shù)學(xué)參考答案 12345678 CDBCDAA C 命題校:國子監(jiān)中學(xué) 2012年11月
9. X=-110. 11. 212. (24,0);(8040,0) 13. 解:y=2x2-4x-6 =2(x2-2x)-6 =2(x-1)2 -8 ∴ 頂點(diǎn)(1,-8). 對稱軸x=1.14. 解:(1)畫出Rt△A1B1C1.的圖形;A1的坐標(biāo)為(1,0)。2)畫出Rt△A2B2C2.的圖形;A1C1= C1.所經(jīng)過的路經(jīng)為:=.15.8c16.(1)=0 ,(2)y=x2-2x-317. 解:作直徑CD,連接BD, ∴ ∠CBD=90°. ∵ ∠A=30°,∴ ∠D=30°. ∴ BC=CD. ∵ CD=4, ∴ BC=2.
18. 解:
開始
34511+3=41+4=51+5=622+3=52+4=62+5=7 這個方法公平合理。
19. 解:(1)∵△CBE是由△ABD旋轉(zhuǎn)得到的, ∴△ABD≌△CBE, ∴∠A=∠BCE=45°, ∴∠DCE=∠DCB+∠BCE=90° 。2)在等腰直角三角形ABC中,∵AB=4,∴AC=4. 又∵AD?DC=1?3, ∴AD=,DC=3 由(1)知AD=CE且∠DCE=90°, ∴DE=DC+CE=2+18=20,∴DE=2 20.解 (1)y=-(x-1)2+2 (2)3或-1 圖像略 (3)0<x<2.21. (1)證明:連接CO. ∵ ∠CDB=∠OBD=30°, ∴ ∠BOC=60°. ∵ AC∥BD, ∴ ∠A=∠OBD=30°. ∴ ∠ACO=90°. ∴ AC為⊙O切線. (2)解:∵ ∠ACO =90°,AC∥BD,。 ∴ DE=BE=. ∴OB=6. 即的半徑長為6c. (3)解:∵∠CDB=∠OBD=30°, 又,, . ∴ (c2) 答:陰影部分的面積為6πc2. 22. 延長FD到H,使DH=BE,證明△ABE≌△ADH再證△AEF≌△AHF∴∠EAF=∠FAH=∠EAH=∠BAD23.解 :(1)不會發(fā)生變化的是△AOB的外接圓半徑,∵∠AOB=90°,∴AB是△AOB的外接圓的直徑AB的長不變,即△AOB的外接圓半徑不變(2)設(shè)⊙K的半徑為r,⊙K與Rt△AOB相切于E、F、P,連EK、KF∴∠KEO=∠OFK=∠C=90°,∴四邊形EOFK是矩形,又OE=OF∴四邊形EOFK是正方形,∴OE=OF=r,AE=AP=4,∴PB=BF=6,∴(4+r)2+(6+r)2=100,∴r=-12(不符合題意),r=2,
24. (1)解方程x2-6x+5=0得x1=5,x2=1,由<n,有=1,n=5,所以點(diǎn)A、B的坐標(biāo)分別為A(1,0),B(0,5).將A(1,0),B(0,5)的坐標(biāo)分別代入y=-x2+bx+c.得解這個方程組,得所以,拋物線的解析式為y=-x2-4x+5. 。2)由y=-x2-4x+5,令y=0,得-x2-4x+5=0.解這個方程,得x1=-5,x2=1,所以C點(diǎn)的坐標(biāo)為(-5,0).由頂點(diǎn)坐標(biāo)公式計算,得點(diǎn)D(-2,9).過D作x軸的垂線交x軸于.則S△DC=×9×(5-2)=,S梯形DBO=×2×(9+5)=14,S△BOC=×5×5=,所以S△BCD=S梯形DBO+ S△DC-S△BOC=14+-=15. (3)設(shè)P點(diǎn)的坐標(biāo)為(a,0)因?yàn)榫段BC過B、C兩點(diǎn),所以BC所在的直線方程為y=x+5.那么,PH與直線BC的交點(diǎn)坐標(biāo)為E(a,a+5),PH與拋物線y=-x2-4x+5的交點(diǎn)坐標(biāo)為H(a,-a2-4a+5).由題意,得①EH=EP,即(-a2-4a+5)-(a+5)=(a+5). 解這個方程,得a=-或a=-5(舍去);②EH=EP,即(-a2-4a+5)-(a+5)=(a+5). 解這個方程,得a=-或a=-5(舍去);即P點(diǎn)的坐標(biāo)為 (-,0)或 (-,0).
25. 解:(1)CD=BE.理由如下: ∵△ABC和△ADE為等邊三角形 ∴AB=AC,AE=AD,∠BAC=∠EAD=60o ∵∠BAE =∠BAC-∠EAC =60o-∠EAC, ∠DAC =∠DAE-∠EAC =60o-∠EAC, ∴∠BAE=∠DAC, ∴△ABE ≌ △ACD ∴CD=BE (2)△AN是等邊三角形.理由如下: ∵△ABE ≌ △ACD, ∴∠ABE=∠ACD. ∵、N分別是BE、CD的中點(diǎn), ∴B= ∵AB=AC,∠ABE=∠ACD, ∴△AB ≌ △ACN. ∴A=AN,∠AB=∠NAC. ∴∠NA=∠NAC+∠CA=∠AB+∠CA=∠BAC=60o ∴△AN是等邊三角形. 設(shè)AD=a,則AB=2a. ∵AD=AE=DE,AB=AC, ∴CE=DE. ∵△ADE為等邊三角形, ∴∠DEC=120 o, ∠ADE=60o, ∴∠EDC=∠ECD=30o , ∴∠ADC=90o. ∴在Rt△ADC中,AD=a,∠ACD=30 o , ∴ CD=. ∵N為DC中點(diǎn), ∴, ∴. ∵△ADE,△ABC,△AN為等邊三角形, ∴S△ADE∶S△ABC∶ S△AN
解法二:△AN是等邊三角形.理由如下: ∵△ABE ≌ △ACD,、N分別是BE、CN的中點(diǎn),∴A=AN,NC=B. ∵AB=AC,∴△AB ≌ △ACN,∴∠AB=∠NAC , ∴∠NA=∠NAC+∠CA=∠AB+∠CA=∠BAC=60o ∴△AN是等邊三角形 設(shè)AD=a,則AD=AE=DE= a,AB=BC=AC=2a 易證BE⊥AC,∴BE=, ∴ ∴ ∵△ADE,△ABC,△AN為等邊三角形 ∴S△ADE∶S△ABC∶ S△AN
右腦記憶論壇 | 快速記憶法 | 記憶力培訓(xùn) | 速讀培訓(xùn) | 速讀軟件 |
Copyright(C) 2006-2014 逍遙右腦 All Rights Reserved