逍遙右腦記憶網(wǎng)-免費(fèi)提供各種記憶力訓(xùn)練學(xué)習(xí)方法!
超右腦
|
催眠術(shù)
|
潛能開發(fā)
|
影像閱讀
|
右腦開發(fā)訓(xùn)練
|
網(wǎng)站地圖
記憶方法
右腦開發(fā)
快速閱讀
思維導(dǎo)圖
學(xué)習(xí)方法
學(xué)習(xí)計(jì)劃
作文大全
早期教育
勵志名言
右腦記憶
記憶法
|
記憶宮殿
|
記憶力訓(xùn)練
記憶術(shù)
|
最強(qiáng)大腦
|
右腦記憶法
學(xué)習(xí)方法
高中學(xué)習(xí)方法
|
高考
|
小學(xué)資源
|
單詞記憶
初中學(xué)習(xí)方法
|
中考
|
教案設(shè)計(jì)
|
試題中心
潛能成功
吸引力法則
|
成功學(xué)
|
九型人格
注意力訓(xùn)練
|
潛意識
|
思維模式
初中學(xué)習(xí)方法
初中語文
初中英語
初中數(shù)學(xué)
初中物理
初中化學(xué)
初中生物
初中政治
初中歷史
初中地理
中考學(xué)習(xí)網(wǎng)
初一學(xué)習(xí)方法
初一語文
初一數(shù)學(xué)
初一英語
初一生物
初一政治
初一歷史
初一地理
初二物理
初一學(xué)習(xí)
初中教案
初二學(xué)習(xí)方法
初二語文
初二數(shù)學(xué)
初二英語
初二生物
初二政治
初二歷史
初二地理
初三物理
初二學(xué)習(xí)
初中試題
初三學(xué)習(xí)方法
初三語文
初三數(shù)學(xué)
初三英語
初三生物
初三政治
初三歷史
初三地理
初三化學(xué)
初三學(xué)習(xí)
初中作文
逍遙右腦記憶
>
試題中心
>
數(shù)學(xué)
>
九年級
>
鐵嶺市2013年數(shù)學(xué)中考試題解析
編輯:
逍遙路
關(guān)鍵詞:
九年級
來源:
高中學(xué)習(xí)網(wǎng)
遼寧省鐵嶺市2013年中考數(shù)學(xué)試卷
一、(共10小題,每小題3分,滿分30分。在每小題給出的四個選項(xiàng)中只有個是符合題目要求的)
1.(3分)(2013?鐵嶺)? 的絕對值是( )
A. B.? C. D.?
考點(diǎn):實(shí)數(shù)的性質(zhì).
分析:根據(jù)負(fù)數(shù)的絕對值等于它的相反數(shù)解答.
解答:解:? = .
故選A.
點(diǎn)評:本題考查了實(shí)數(shù)的性質(zhì),主要利用了負(fù)數(shù)的絕對值是它的相反數(shù).
2.(3分)(2013?鐵嶺)下列各式中,計(jì)算正確的是( 。
A.2x+3y=5xyB.x6÷x2=x3C.x2?x3=x5D.(?x3)3=x6
考點(diǎn):同底數(shù)冪的除法;合并同類項(xiàng);同底數(shù)冪的;冪的乘方與積的乘方.
專題:.
分析:根據(jù)同底數(shù)冪的除法,底數(shù)不變指數(shù)相減;合并同類項(xiàng),系數(shù)相加字母和字母的指數(shù)不變;同底數(shù)冪的,底數(shù)不變指數(shù)相加;冪的乘方,底數(shù)不變指數(shù)相乘,對各選項(xiàng)計(jì)算后利用排除法求解.
解答:解:A、由于2x和3y不是同類項(xiàng),不能合并,故本選項(xiàng)錯誤;
B、由于x6÷x2=x4≠x3,故本選項(xiàng)錯誤;
C、由于x2?x3=x2+3=x5,故本選項(xiàng)正確;
D、由于(?x3)3=?x9≠x6,故本選項(xiàng)錯誤.
故選C.
點(diǎn)評:本題考查同底數(shù)冪的除法,合并同類項(xiàng),同底數(shù)冪的乘法,冪的乘方很容易混淆,一定要記準(zhǔn)法則才能做題.
3.(3分)(2013?鐵嶺)下列圖形中,既是中心對稱圖形又是軸對稱圖形的是( )
A. B. C. D.
考點(diǎn):中心對稱圖形;軸對稱圖形.
分析:根據(jù)軸對稱圖形與中心對稱圖形的概念求解.
解答:解:A、是軸對稱圖形,不是中心對稱圖形,故本選項(xiàng)錯誤;
B、是軸對稱圖形,也是中心對稱圖形,故本選項(xiàng)正確;
C、是軸對稱圖形,不是中心對稱圖形,故本選項(xiàng)錯誤;
D、是軸對稱圖形,不是中心對稱圖形,故本選項(xiàng)錯誤.
故選B.
點(diǎn)評:此題主要考查了中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.
4.(3分)(2013?鐵嶺)如圖,在數(shù)軸上表示不等式組 的解集,其中正確的是( 。
A. B. C. D.
考點(diǎn):在數(shù)軸上表示不等式的解集;解一元一次不等式組.
專題:.
分析:求出不等式的解集,表示在數(shù)軸上即可.
解答:解: ,
由①得:x<1,
由②得:x≥?1,
則不等式的解集為?1≤x<1,
表示在數(shù)軸上,如圖所示:
故選C
點(diǎn)評:此題考查了在數(shù)軸上表示解集,把每個不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),數(shù)軸上的點(diǎn)把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個數(shù)一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實(shí)心圓點(diǎn)表示;“<”,“>”要用空心圓點(diǎn)表示.
5.(3分)(2013?鐵嶺)在一個不透明的口袋中裝有4個紅球和若干個白球,他們除顏色外其他完全相同.通過多次摸球?qū)嶒?yàn)后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在25%附近,則口袋中白球可能有( 。
A.16個B.15個C.13個D.12個
考點(diǎn):利用頻率估計(jì)概率.
分析:由摸到紅球的頻率穩(wěn)定在25%附近得出口袋中得到紅色球的概率,進(jìn)而求出白球個數(shù)即可.
解答:解:設(shè)白球個數(shù)為:x個,
∵摸到紅色球的頻率穩(wěn)定在25%左右,
∴口袋中得到紅色球的概率為25%,
∴ = ,
解得:x=12,
故白球的個數(shù)為12個.
故選:D.
點(diǎn)評:此題主要考查了利用頻率估計(jì)概率,根據(jù)大量反復(fù)試驗(yàn)下頻率穩(wěn)定值即概率得出是解題關(guān)鍵.
6.(3分)(2013?鐵嶺)如圖是4塊小立方塊所搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置小方塊的個數(shù),其主視圖是( 。
A. B. C. D.
考點(diǎn):由三視圖判斷幾何體;簡單組合體的三視圖.
分析:根據(jù)各層小正方體的個數(shù),然后得出三視圖中主視圖的形狀,即可得出答案.
解答:解:綜合三視圖,這個幾何體中,根據(jù)各層小正方體的個數(shù)可得:主視圖有一層3個,另一層1個,
所以主視圖是:
故選:D.
點(diǎn)評:此題主要考查了學(xué)生對三視圖掌握程度和靈活運(yùn)用能力,同時也體現(xiàn)了對空間想象能力方面的考查.
7.(3分)(2013?鐵嶺)如圖,在△ABC和△DEB中,已知AB=DE,還需添加兩個條件才能使△ABC≌△DEC,不能添加的一組條件是( 。
A.BC=EC,∠B=∠EB.BC=EC,AC=DCC.BC=DC,∠A=∠DD.∠B=∠E,∠A=∠D
考點(diǎn):全等三角形的判定.
分析:根據(jù)全等三角形的判定方法分別進(jìn)行判定即可.
解答:解:A、已知AB=DE,再加上條件BC=EC,∠B=∠E可利用SAS證明△ABC≌△DEC,故此選項(xiàng)不合題意;
B、已知AB=DE,再加上條件BC=EC,AC=DC可利用SSS證明△ABC≌△DEC,故此選項(xiàng)不合題意;
C、已知AB=DE,再加上條件BC=DC,∠A=∠D不能證明△ABC≌△DEC,故此選項(xiàng)符合題意;
D、已知AB=DE,再加上條件∠B=∠E,∠A=∠D可利用ASA證明△ABC≌△DEC,故此選項(xiàng)不合題意;
故選:C.
點(diǎn)評:本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.
8.(3分)(2013?鐵嶺)某工廠生產(chǎn)一種零件,計(jì)劃在20天內(nèi)完成,若每天多生產(chǎn)4個,則15天完成且還多生產(chǎn)10個.設(shè)原計(jì)劃每天生產(chǎn)x個,根據(jù)題意可列分式方程為( 。
A. B. C. D.
考點(diǎn):由實(shí)際問題抽象出分式方程.
分析:設(shè)原計(jì)劃每天生產(chǎn)x個,則實(shí)際每天生產(chǎn)(x+4)個,根據(jù)題意可得等量關(guān)系:(原計(jì)劃20天生產(chǎn)的零件個數(shù)+10個)÷實(shí)際每天生產(chǎn)的零件個數(shù)=15天,根據(jù)等量關(guān)系列出方程即可.
解答:解:設(shè)原計(jì)劃每天生產(chǎn)x個,則實(shí)際每天生產(chǎn)(x+4)個,根據(jù)題意得:
=15,
故選:A.
點(diǎn)評:此題主要考查了由實(shí)際問題抽象出分式方程,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程.
9.(3分)(2013?鐵嶺)如果三角形的兩邊長分別是方程x2?8x+15=0的兩個根,那么連接這個三角形三邊的中點(diǎn),得到的三角形的周長可能是( 。
A.5.5B.5C.4.5D.4
考點(diǎn):三角形中位線定理;解一元二次方程-因式分解法;三角形三邊關(guān)系.
分析:首先解方程求得三角形的兩邊長,則第三邊的范圍可以求得,進(jìn)而得到三角形的周長l的范圍,而連接這個三角形三邊的中點(diǎn),得到的三角形的周長一定是l的一半,從而求得中點(diǎn)三角形的周長的范圍,從而確定.
解答:解:解方程x2?8x+15=0得:x1=3,x2=5,
則第三邊c的范圍是:2<c<8.
則三角形的周長l的范圍是:10<l<16,
∴連接這個三角形三邊的中點(diǎn),得到的三角形的周長m的范圍是:5<m<8.
故滿足條件的只有A.
故選A.
點(diǎn)評:本題考查了三角形的三邊關(guān)系以及三角形的中位線的性質(zhì),理解原來的三角形與中點(diǎn)三角形周長之間的關(guān)系式關(guān)鍵.
10.(3分)(2013?鐵嶺)如圖,點(diǎn)G、E、A、B在一條直線上,Rt△EFG從如圖所示是位置出發(fā),沿直線AB向右勻速運(yùn)動,當(dāng)點(diǎn)G與B重合時停止運(yùn)動.設(shè)△EFG與矩形ABCD重合部分的面積為S,運(yùn)動時間為t,則S與t的圖象大致是( 。
A. B. C. D.
考點(diǎn):動點(diǎn)問題的函數(shù)圖象.371
專題:數(shù)形結(jié)合.
分析:設(shè)GE=a,EF=b,AE=m,AB=c,Rt△EFG向右勻速運(yùn)動的速度為1,分類討論:當(dāng)E點(diǎn)在點(diǎn)A左側(cè)時,S=0,其圖象為在x軸的線段;當(dāng)點(diǎn)G在點(diǎn)A左側(cè),點(diǎn)E在點(diǎn)A右側(cè)時,AE=t?m,GA=a?(t?m)=a+m?t,易證得△GAP∽△GEF,利用相似比可表示PA= (a+m?t),S為圖形PAEF的面積,則S= [ (a+m?t)]?(t?m),可發(fā)現(xiàn)S是t的二次函數(shù),且二次項(xiàng)系數(shù)為負(fù)數(shù),所以拋物線開口向下;當(dāng)點(diǎn)G在點(diǎn)A右側(cè),點(diǎn)E在點(diǎn)B左側(cè)時,S為定值,定義三角形GEF的面積,其圖象為平行于x軸的線段;當(dāng)點(diǎn)G在點(diǎn)B左側(cè),點(diǎn)E在點(diǎn)B右側(cè)時,和前面一樣運(yùn)用相似比可表示出PB= (a+m+c?t),S為△GPB的面積,則S= (t?a?m?c)2,則S是t的二次函數(shù),且二次項(xiàng)系數(shù)為,正數(shù),所以拋物線開口向上.
解答:解:設(shè)GE=a,EF=b,AE=m,AB=c,Rt△EFG向右勻速運(yùn)動的速度為1,
當(dāng)E點(diǎn)在點(diǎn)A左側(cè)時,S=0;
當(dāng)點(diǎn)G在點(diǎn)A左側(cè),點(diǎn)E在點(diǎn)A右側(cè)時,如圖,
AE=t?m,GA=a?(t?m)=a+m?t,
∵PA∥EF,
∴△GAP∽△GEF,
∴ = ,即 =
∴PA= (a+m?t),
∴S= (PA+FE)?AE= [ (a+m?t)]?(t?m)
∴S是t的二次函數(shù),且二次項(xiàng)系數(shù)為負(fù)數(shù),所以拋物線開口向下;
當(dāng)點(diǎn)G在點(diǎn)A右側(cè),點(diǎn)E在點(diǎn)B左側(cè)時,S= ab;
當(dāng)點(diǎn)G在點(diǎn)B左側(cè),點(diǎn)E在點(diǎn)B右側(cè)時,如圖,
GB=a+m+c?t,
∵PA∥EF,
∴△GBP∽△GEF,
∴ = ,
∴PB= (a+m+c?t),
∴S= GB?PB= (a+m+c?t)? (a+m+c?t)= (t?a?m?c)2,
∴S是t的二次函數(shù),且二次項(xiàng)系數(shù)為,正數(shù),所以拋物線開口向上,
綜上所述,S與t的圖象分為四段,第一段為x軸上的一條線段,第二段為開口向下的拋物線的一部分,第三段為與x軸平行的線段,第四段為開口先上的拋物線的一部分.
故選D.
點(diǎn)評:本題考查了動點(diǎn)問題的函數(shù)圖象:先根據(jù)幾何性質(zhì)得到與動點(diǎn)有關(guān)的兩變量之間的函數(shù)關(guān)系,然后利用函數(shù)解析式和函數(shù)性質(zhì)畫出其函數(shù)圖象,注意自變量的取值范圍.
二.題(本大題共8小題,每小題3分,共24分)
11.(3分)(2013?鐵嶺)地球上陸地的面積約為149 000 000平方千米,把數(shù)據(jù)149 000 000用科學(xué)記數(shù)法表示為 1.49×108。
考點(diǎn):科學(xué)記數(shù)法?表示較大的數(shù).
專題:計(jì)算題.
分析:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤a<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點(diǎn)移動了多少位,n的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).
解答:解:將149 000 000用科學(xué)記數(shù)法表示為1.49×108.
故答案為:1.49×108.
點(diǎn)評:此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤a<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.
12.(3分)(2013?鐵嶺)在綜合實(shí)踐課上.五名同學(xué)做的作品的數(shù)量(單位:件)分別是:5,7,3,6,4,則這組數(shù)據(jù)的中位數(shù)是 5 件.
考點(diǎn):中位數(shù).
分析:根據(jù)中位數(shù)的求法:給定n個數(shù)據(jù),按從小到大排序,如果n為奇數(shù),位于中間的那個數(shù)就是中位數(shù);如果n為偶數(shù),位于中間兩個數(shù)的平均數(shù)就是中位數(shù).
解答:解:按從小到大的順序排列是:3,4,5,6,7.
中間的是5,故中位數(shù)是5.
故答案是:5.
點(diǎn)評:本題主要考查了中位數(shù)的定義,理解定義是關(guān)鍵.
13.(3分)(2013?鐵嶺)函數(shù)y= 有意義,則自變量x的取值范圍是 x≥1且x≠2。
考點(diǎn):函數(shù)自變量的取值范圍.
分析:根據(jù)被開方數(shù)大于等于0,分母不等于0列式進(jìn)行計(jì)算即可得解.
解答:解:根據(jù)題意得,x?1≥0且x?2≠0,
解得x≥1且x≠2.
故答案為:x≥1且x≠2.
點(diǎn)評:本題考查的知識點(diǎn)為:分式有意義,分母不為0;二次根式的被開方數(shù)是非負(fù)數(shù).
14.(3分)(2013?鐵嶺)甲、乙兩名射擊手的50次測試的平均成績都是8環(huán),方差分別是 , ,則成績比較穩(wěn)定的是 甲。ㄌ睢凹住被颉耙摇保
考點(diǎn):方差.
分析:根據(jù)方差的意義可作出判斷.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.
解答:解:∵ , ,
∴ < ,
∴成績比較穩(wěn)定的是甲;
故答案為:甲.
點(diǎn)評:本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.
15.(3分)(2013?鐵嶺)某商店壓了一批商品,為盡快售出,該商店采取如下銷售方案:將原來每件m元,加價50%,再做兩次降價處理,第一次降價30%,第二次降價10%.經(jīng)過兩次降價后的價格為 0.945 元(結(jié)果用含m的代數(shù)式表示)
考點(diǎn):列代數(shù)式.
分析:先算出加價50%以后的價格,再求第一次降價30%的價格,最后求出第二次降價10%的價格,從而得出答案.
解答:解:根據(jù)題意得:
m(1+50%)(1?30%)(1?10%)=0.945m(元);
故答案為:0.945元.
點(diǎn)評:此題考查了列代數(shù)式,解決問題的關(guān)鍵是讀懂題意,列出代數(shù)式,是一道基礎(chǔ)題.
16.(3分)(2013?鐵嶺)如圖,點(diǎn)P是正比例函數(shù)y=x與反比例函數(shù)y= 在第一象限內(nèi)的交點(diǎn),PA⊥OP交x軸于點(diǎn)A,△POA的面積為2,則k的值是 2。
考點(diǎn):反比例函數(shù)系數(shù)k的幾何意義;等腰直角三角形.
分析:過P作PB⊥OA于B,根據(jù)一次函數(shù)的性質(zhì)得到∠POA=45°,則△POA為等腰直角三角形,所以O(shè)B=AB,于是S△POB= S△POA= ×2=1,然后根據(jù)反比例函數(shù)y= (k≠0)系數(shù)k的幾何意義即可得到k的值.
解答:解:過P作PB⊥OA于B,如圖,
∵正比例函數(shù)的解析式為y=x,
∴∠POA=45°,
∵PA⊥OP,
∴△POA為等腰直角三角形,
∴OB=AB,
∴S△POB= S△POA= ×2=1,
∴ k=1,
∴k=2.
故答案為2.
點(diǎn)評:本題考查了反比例函數(shù)y= (k≠0)系數(shù)k的幾何意義:從反比例函數(shù)y= (k≠0)圖象上任意一點(diǎn)向x軸和y軸作垂線,垂線與坐標(biāo)軸所圍成的矩形面積為k.也考查了等腰直角三角形的性質(zhì).
17.(3分)(2013?鐵嶺)如圖,在△ABC中,AB=2,BC=3.6,∠B=60°,將△ABC繞點(diǎn)A按順時針旋轉(zhuǎn)一定角度得到△ADE,當(dāng)點(diǎn)B的對應(yīng)點(diǎn)D恰好落在BC邊上時,則CD的長為 1.6 .
考點(diǎn):旋轉(zhuǎn)的性質(zhì).
分析:由將△ABC繞點(diǎn)A按順時針旋轉(zhuǎn)一定角度得到△ADE,當(dāng)點(diǎn)B的對應(yīng)點(diǎn)D恰好落在BC邊上,可得AD=AB,又由∠B=60°,可證得△ABD是等邊三角形,繼而可得BD=AB=2,則可求得答案.
解答:解:由旋轉(zhuǎn)的性質(zhì)可得:AD=AB,
∵∠B=60°,
∴△ABD是等邊三角形,
∴BD=AB,
∵AB=2,BC=3.6,
∴CD=BC?BD=3.6?2=1.6.
故答案為:1.6.
點(diǎn)評:此題考查了旋轉(zhuǎn)的性質(zhì)以及等邊三角形的判定與性質(zhì).此題比較簡單,注意掌握旋轉(zhuǎn)前后圖形的對應(yīng)關(guān)系,注意數(shù)形結(jié)合思想的應(yīng)用.
18.(3分)(2013?鐵嶺)如圖,在平面直角坐標(biāo)中,直線l經(jīng)過原點(diǎn),且與y軸正半軸所夾的銳角為60°,過點(diǎn)A(0,1)作y軸的垂線l于點(diǎn)B,過點(diǎn)B1作作直線l的垂線交y軸于點(diǎn)A1,以A1B.BA為鄰邊作?ABA1C1;過點(diǎn)A1作y軸的垂線交直線l于點(diǎn)B1,過點(diǎn)B1作直線l的垂線交y軸于點(diǎn)A2,以A2B1.B1A1為鄰邊作?A1B1A2C2;…;按此作法繼續(xù)下去,則Cn的坐標(biāo)是。? ×4n?1,4n) .
考點(diǎn):一次函數(shù)綜合題;平行四邊形的性質(zhì).
專題:規(guī)律型.
分析:先求出直線l的解析式為y= x,設(shè)B點(diǎn)坐標(biāo)為(x,1),根據(jù)直線l經(jīng)過點(diǎn)B,求出B點(diǎn)坐標(biāo)為( ,1),解Rt△A1AB,得出AA1=3,OA1=4,由平行四邊形的性質(zhì)得出A1C1=AB= ,則C1點(diǎn)的坐標(biāo)為(? ,4),即(? ×40,41);根據(jù)直線l經(jīng)過點(diǎn)B1,求出B1點(diǎn)坐標(biāo)為(4 ,4),解Rt△A2A1B1,得出A1A2=12,OA2=16,由平行四邊形的性質(zhì)得出A2C2=A1B1=4 ,則C2點(diǎn)的坐標(biāo)為(?4 ,16),即(? ×41,42);同理,可得C3點(diǎn)的坐標(biāo)為(?16 ,64),即(? ×42,43);進(jìn)而得出規(guī)律,求得Cn的坐標(biāo)是(? ×4n?1,4n).
解答:解:∵直線l經(jīng)過原點(diǎn),且與y軸正半軸所夾的銳角為60°,
∴直線l的解析式為y= x.
∵AB⊥y軸,點(diǎn)A(0,1),
∴可設(shè)B點(diǎn)坐標(biāo)為(x,1),
將B(x,1)代入y= x,
得1= x,解得x= ,
∴B點(diǎn)坐標(biāo)為( ,1),AB= .
在Rt△A1AB中,∠AA1B=90°?60°=30°,∠A1AB=90°,
∴AA1= AB=3,OA1=OA+AA1=1+3=4,
∵?ABA1C1中,A1C1=AB= ,
∴C1點(diǎn)的坐標(biāo)為(? ,4),即(? ×40,41);
由 x=4,解得x=4 ,
∴B1點(diǎn)坐標(biāo)為(4 ,4),A1B1=4 .
在Rt△A2A1B1中,∠A1A2B1=30°,∠A2A1B1=90°,
∴A1A2= A1B1=12,OA2=OA1+A1A2=4+12=16,
∵?A1B1A2C2中,A2C2=A1B1=4 ,
∴C2點(diǎn)的坐標(biāo)為(?4 ,16),即(? ×41,42);
同理,可得C3點(diǎn)的坐標(biāo)為(?16 ,64),即(? ×42,43);
以此類推,則Cn的坐標(biāo)是(? ×4n?1,4n).
故答案為(? ×4n?1,4n).
點(diǎn)評:本題考查了平行四邊形的性質(zhì),解直角三角形以及一次函數(shù)的綜合應(yīng)用,先分別求出C1、C2、C3點(diǎn)的坐標(biāo),從而發(fā)現(xiàn)規(guī)律是解題的關(guān)鍵.
三.解答題(第19題10分,第20題12分,共22分)
19.(10分)(2013?鐵嶺)先化簡,再求值:(1? )÷ ,其中a=?2.
考點(diǎn):分式的化簡求值.
分析:先把括號中通分后,利用同分母分式的減法法則計(jì)算,同時將除式的分子分解因式后,再利用除以一個數(shù)等于乘以這個數(shù)的倒數(shù)把除法運(yùn)算化為乘法運(yùn)算,約分后得到最簡結(jié)果,再把a(bǔ)=?2代入進(jìn)行計(jì)算即可.
解答:解:(1? )÷ =( ) = × = ,
把a(bǔ)=?2代入上式得:
原式= = .
點(diǎn)評:此題考查了分式的化簡求值,關(guān)鍵是通分,找出最簡公分母,分式的乘除運(yùn)算關(guān)鍵是約分,約分的關(guān)鍵是找公因式,化簡求值題要將原式化為最簡后再代值.
20.(12分)(2013?鐵嶺)如圖,△ABC中,AB=AC,AD是△ABC的角平分線,點(diǎn)O為AB的中點(diǎn),連接DO并延長到點(diǎn)E,使OE=OD,連接AE,BE.
(1)求證:四邊形AEBD是矩形;
(2)當(dāng)△ABC滿足什么條件時,矩形AEBD是正方形,并說明理由.
考點(diǎn):矩形的判定;正方形的判定.
分析:(1)利用平行四邊形的判定首先得出四邊形AEBD是平行四邊形,進(jìn)而理由等腰三角形的性質(zhì)得出∠ADB=90°,即可得出答案;
(2)利用等腰直角三角形的性質(zhì)得出AD=BD=CD,進(jìn)而利用正方形的判定得出即可.
解答:(1)證明:∵點(diǎn)O為AB的中點(diǎn),連接DO并延長到點(diǎn)E,使OE=OD,
∴四邊形AEBD是平行四邊形,
∵AB=AC,AD是△ABC的角平分線,
∴AD⊥BC,
∴∠ADB=90°,
∴平行四邊形AEBD是矩形;
(2)當(dāng)∠BAC=90°時,
理由:∵∠BAC=90°,AB=AC,AD是△ABC的角平分線,
∴AD=BD=CD,
∵由(1)得四邊形AEBD是矩形,
∴矩形AEBD是正方形.
點(diǎn)評:此題主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性質(zhì)等知識,熟練掌握正方形和矩形的判定是解題關(guān)鍵.
四.解答題(第21題12分,第22題12分,共24分)
21.(12分)(2013?鐵嶺)為迎接十二運(yùn),某校開設(shè)了A:籃球,B:毽球,C:跳繩,D:健美操四種體育活動,為了解學(xué)生對這四種體育活動的喜歡情況,在全校范圍內(nèi)隨機(jī)抽取若干名學(xué)生,進(jìn)行問卷調(diào)查(每個被調(diào)查的同學(xué)必須選擇而且只能在4中體育活動中選擇一種).將數(shù)據(jù)進(jìn)行整理并繪制成以下兩幅統(tǒng)計(jì)圖(未畫完整).
(1)這次調(diào)查中,一共查了 200 名學(xué)生:
(2)請補(bǔ)全兩幅統(tǒng)計(jì)圖:
(3)若有3名最喜歡毽球運(yùn)動的學(xué)生,1名最喜歡跳繩運(yùn)動的學(xué)生組隊(duì)外出參加一次聯(lián)誼互活動,欲從中選出2人擔(dān)任組長(不分正副),求兩人均是最喜歡毽球運(yùn)動的學(xué)生的概率.
考點(diǎn):條形統(tǒng)計(jì)圖;扇形統(tǒng)計(jì)圖;列表法與樹狀圖法.
分析:(1)根據(jù)A類的人數(shù)和所占的百分比,即可求出總?cè)藬?shù);
(2)用整體1減去A、C、D類所占的百分比,即可求出B所占的百分比;用總?cè)藬?shù)乘以所占的百分比,求出C的人數(shù),從而補(bǔ)全圖形;
(3)根據(jù)題意采用列舉法,舉出所有的可能,注意要做到不重不漏,再根據(jù)概率公式即可得出答案.
解答:解:調(diào)查的總學(xué)生是 =200(名);
故答案為:200.
(3)B所占的百分比是1?15%?20%?30%=35%,
C的人數(shù)是:200×30%=60(名),
補(bǔ)圖如下:
(3)用A1,A2,A3表示3名喜歡毽球運(yùn)動的學(xué)生,B表示1名跳繩運(yùn)動的學(xué)生,
則從4人中選出2人的情況有:(A1,A2),(A1,A3),(A1,B),(A2,A3),(A2,B),(A3,B),共計(jì)6種,
選出的2人都是最喜歡毽球運(yùn)動的學(xué)生有(A1,A2),(A1,A3),(A2,A3)共計(jì)3種,
則兩人均是最喜歡毽球運(yùn)動的學(xué)生的概率 = .
點(diǎn)評:此題考查了扇形圖與概率的知識,綜合性比較強(qiáng),解題時要注意認(rèn)真審題,理解題意;在用列舉法求概率時,一定要注意不重不漏.用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.
22.(12分)(2013?鐵嶺)如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點(diǎn)P,OF∥BC交AC于AC點(diǎn)E,交PC于點(diǎn)F,連接AF.
(1)判斷AF與⊙O的位置關(guān)系并說明理由;
(2)若⊙O的半徑為4,AF=3,求AC的長.
考點(diǎn):切線的判定與性質(zhì).
分析:(1)AF為為圓O的切線,理由為:練級OC,由PC為圓O的切線,利用切線的性質(zhì)得到CP垂直于OC,由OF與BC平行,利用兩直線平行內(nèi)錯角相等,同位角相等,分別得到兩對角相等,根據(jù)OB=OC,利用等邊對等角得到一對角相等,等量代換得到一對角相等,再由OC=OA,OF為公共邊,利用SAS得出三角形AOF與三角形COF全等,由全等三角形的對應(yīng)角相等及垂直定義得到AF垂直于OA,即可得證;
(2)由AF垂直于OA,在直角三角形AOF中,由OA與AF的長,利用勾股定理求出OF的長,而OA=OC,OF為角平分線,利用三線合一得到E為AC中點(diǎn),OE垂直于AC,利用面積法求出AE的長,即可確定出AC的長.
解答:解:(1)AF為圓O的切線,理由為:
連接OC,
∵PC為圓O切線,
∴CP⊥OC,
∴∠OCP=90°,
∵OF∥BC,
∴∠AOF=∠B,∠COF=∠OCB,
∵OC=OB,
∴∠OCB=∠B,
∴∠AOF=∠COF,
∵在△AOF和△COF中,
,
∴△AOF≌△COF(SAS),
∴∠OAF=∠OCF=90°,
則AF為圓O的切線;
(2)∵△AOF≌△COF,
∴∠AOF=∠COF,
∵OA=OC,
∴E為AC中點(diǎn),即AE=CE= AC,OE⊥AC,
∵OA⊥AF,
∴在Rt△AOF中,OA=4,AF=3,
根據(jù)勾股定理得:OF=5,
∵S△AOF= ?OA?AF= ?OF?AE,
∴AE= ,
則AC=2AE= .
點(diǎn)評:此題考查了切線的判定與性質(zhì),涉及的知識有:全等三角形的判定與性質(zhì),平行線的性質(zhì),等腰三角形的性質(zhì),三角形的面積求法,熟練掌握切線的判定與性質(zhì)是解本題的關(guān)鍵.
五.解答題(滿分12分)
23.(12分)(2013?鐵嶺)如圖所示,某工程隊(duì)準(zhǔn)備在山坡(山坡視為直線l)上修一條路,需要測量山坡的坡度,即tanα的值.測量員在山坡P處(不計(jì)此人身高)觀察對面山頂上的一座鐵塔,測得塔尖C的仰角為37°,塔底B的仰角為26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,圖中的點(diǎn)O、B、C、A、P在同一平面內(nèi),求山坡的坡度.(參考數(shù)據(jù)sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)
考點(diǎn):解直角三角形的應(yīng)用-仰角俯角問題;解直角三角形的應(yīng)用-坡度坡角問題.
分析:過點(diǎn)P作PD⊥OC于D,PE⊥OA于E,則四邊形ODPE為矩形,先解Rt△PBD,得出BD=PD?tan26.6°;解Rt△CBD,得出CD=PD?tan37°;再根據(jù)CD?BD=BC,列出方程,求出PD=320,進(jìn)而求出PE=60,AE=120,然后在△APE中利用三角函數(shù)的定義即可求解.
解答:解:如圖,過點(diǎn)P作PD⊥OC于D,PE⊥OA于E,則四邊形ODPE為矩形.
在Rt△PBD中,∵∠BDP=90°,∠BPD=26.6°,
∴BD=PD?tan∠BPD=PD?tan26.6°;
在Rt△CBD中,∵∠CDP=90°,∠CPD=37°,
∴CD=PD?tan∠CPD=PD?tan37°;
∵CD?BD=BC,
∴PD?tan37°?PD?tan26.6°=80,
∴0.75PD?0.50PD=80,
解得PD=320,
∴BD=PD?tan26.6°≈320×0.50=160,
∵OB=220,
∴PE=OD=OB?BD=60,
∵OE=PD=320,
∴AE=OE?OA=320?200=120,
∴tanα= = =0.5,
∴α≈26.6°.
點(diǎn)評:本題考查了解直角三角形的應(yīng)用?仰角俯角問題、坡度坡角問題,難度適中,通過作輔助線,構(gòu)造直角三角形,利用三角函數(shù)求解是解題的關(guān)鍵.
六.解答題(滿分12分)
24.(12分)(2013?鐵嶺)某商家獨(dú)家銷售具有地方特色的某種商品,每件進(jìn)價為40元.經(jīng)過市場調(diào)查,一周的銷售量y件與銷售單價x(x≥50)元/件的關(guān)系如下表:
銷售單價x(元/件)…55 60 70 75 …
一周的銷售量y(件)…450 400 300 250 …
(1)直接寫出y與x的函數(shù)關(guān)系式: y=?10x+1000
(2)設(shè)一周的銷售利潤為S元,請求出S與x的函數(shù)關(guān)系式,并確定當(dāng)銷售單價在什么范圍內(nèi)變化時,一周的銷售利潤隨著銷售單價的增大而增大?
(3)雅安地震牽動億萬人民的心,商家決定將商品一周的銷售利潤全部寄往災(zāi)區(qū),在商家購進(jìn)該商品的貸款不超過10000元情況下,請你求出該商家最大捐款數(shù)額是多少元?
考點(diǎn):二次函數(shù)的應(yīng)用.
分析:(1)設(shè)y=kx+b,把點(diǎn)的坐標(biāo)代入解析式,求出k、b的值,即可得出函數(shù)解析式;
(2)根據(jù)利潤=(售價?進(jìn)價)×銷售量,列出函數(shù)關(guān)系式,繼而確定銷售利潤隨著銷售單價的增大而增大的銷售單價的范圍;
(3)根據(jù)購進(jìn)該商品的貸款不超過10000元,求出進(jìn)貨量,然后求最大銷售額即可.
解答:解:(1)設(shè)y=kx+b,
由題意得, ,
解得: ,
則函數(shù)關(guān)系式為:y=?10x+1000;
(2)由題意得,S=(x?40)y=(x?40)(?10x+1000)
=?10x2+1400x?40000=?10(x?70)2+9000,
∵?10<0,
∴函數(shù)圖象開口向下,對稱軸為x=70,
∴當(dāng)40≤x≤70時,銷售利潤隨著銷售單價的增大而增大;
(3)當(dāng)購進(jìn)該商品的貸款為10000元時,
y= =250(件),
此時x=75,
由(2)得當(dāng)x≥70時,S隨x的增大而減小,
∴當(dāng)x=70時,銷售利潤最大,
此時S=9000,
即該商家最大捐款數(shù)額是9000元.
本文來自:逍遙右腦記憶 http://www.portlandfoamroofing.com/chusan/70335.html
相關(guān)閱讀:
2013年中考數(shù)學(xué)幾何綜合試題匯編
上一篇:
黔東南州2013年數(shù)學(xué)中考試卷解析
下一篇:
郴州市2013年中考數(shù)學(xué)試卷解析
相關(guān)主題
2013年中考數(shù)學(xué)幾何綜合試題匯編
2013年全國中考數(shù)學(xué)規(guī)律探索試題匯編
2013年中考數(shù)學(xué)三角形相似試題匯編
2013年中考數(shù)學(xué)一元一次方程不等式試題匯編
盤錦市2013年中考數(shù)學(xué)試卷(帶答案)
日照市2013年中考數(shù)學(xué)試卷(附答案)
方案設(shè)計(jì)2013年全國中考數(shù)學(xué)題
九年級下冊數(shù)學(xué)方程復(fù)習(xí)試題(人教課標(biāo)版)
紹興市2013年中考數(shù)學(xué)試卷解析
初三數(shù)學(xué)系統(tǒng)復(fù)習(xí)函數(shù)配套練習(xí)
相關(guān)推薦
推薦閱讀
2013屆九年級數(shù)學(xué)中考模擬試題
一、(每小題3分,滿分24分) ( )1. 是 A. 的相反數(shù) B. 的相反數(shù) C. 的相反數(shù) D. 的……
黔東南州2013年數(shù)學(xué)中考試卷解析
貴州省黔東南州2013年中考數(shù)學(xué)試卷 一、(本大題共10個小題,每小題4分,共40分)本大題每……
九年級上期數(shù)學(xué)期中復(fù)習(xí)試卷
j 一、(每題4分,共40分) 1、已知扇形的弧長為2π,半徑為4, 則此扇形的面積為( ) A.4π……
2012聚仁教育集團(tuán)初三上冊數(shù)學(xué)第一階段測
浙江省金華市聚仁教育集團(tuán)2012-2013學(xué)年第一學(xué)期第一階段測試 九年級數(shù)學(xué)試題 一、(每小題3……
九年級上冊數(shù)學(xué)期中試題(含答案)
浙江省杭州市運(yùn)河鎮(zhèn)亭趾實(shí)驗(yàn)學(xué)校2013屆九年級上學(xué)期期中考試數(shù)學(xué)試題 請同學(xué)們注意: 1、本……
相關(guān)閱讀
漳州市2013年中考數(shù)學(xué)試卷
2012年九年級上冊數(shù)學(xué)期中試題(帶答案)
淄博市2013年中考數(shù)學(xué)試卷(有答案)
2013屆九年級上冊數(shù)學(xué)期中試卷(帶答案)
十堰市2013年中考數(shù)學(xué)試卷解析
九年級數(shù)學(xué)上學(xué)期期末試卷(附答案)
九年級數(shù)學(xué)第二單元方程和不等式測試題
2012年九年級上期數(shù)學(xué)期中考試卷(江蘇)
2012年秋季學(xué)期九年級上冊數(shù)學(xué)段考試卷(
沈陽市2013年中考數(shù)學(xué)試卷(含答案)
右腦記憶論壇
|
快速記憶法
|
記憶力培訓(xùn)
|
速讀培訓(xùn)
|
速讀軟件
|
Copyright(C) 2006-2014
逍遙右腦
All Rights Reserved