逍遙右腦記憶網(wǎng)-免費(fèi)提供各種記憶力訓(xùn)練學(xué)習(xí)方法!
超右腦
|
催眠術(shù)
|
潛能開(kāi)發(fā)
|
影像閱讀
|
右腦開(kāi)發(fā)訓(xùn)練
|
網(wǎng)站地圖
記憶方法
右腦開(kāi)發(fā)
快速閱讀
思維導(dǎo)圖
學(xué)習(xí)方法
學(xué)習(xí)計(jì)劃
作文大全
早期教育
勵(lì)志名言
右腦記憶
記憶法
|
記憶宮殿
|
記憶力訓(xùn)練
記憶術(shù)
|
最強(qiáng)大腦
|
右腦記憶法
學(xué)習(xí)方法
高中學(xué)習(xí)方法
|
高考
|
小學(xué)資源
|
單詞記憶
初中學(xué)習(xí)方法
|
中考
|
教案設(shè)計(jì)
|
試題中心
潛能成功
吸引力法則
|
成功學(xué)
|
九型人格
注意力訓(xùn)練
|
潛意識(shí)
|
思維模式
高中學(xué)習(xí)方法
高中語(yǔ)文
高中英語(yǔ)
高中數(shù)學(xué)
高中物理
高中化學(xué)
高中生物
高中政治
高中歷史
高中地理
高中教案
高中試題
高一學(xué)習(xí)方法
高一語(yǔ)文
高一數(shù)學(xué)
高一英語(yǔ)
高一物理
高一化學(xué)
高一生物
高一政治
高一歷史
高一地理
高一學(xué)習(xí)
高二學(xué)習(xí)方法
高二語(yǔ)文
高二數(shù)學(xué)
高二英語(yǔ)
高二物理
高二化學(xué)
高二生物
高二政治
高二歷史
高二地理
高二學(xué)習(xí)
高三學(xué)習(xí)方法
高三語(yǔ)文
高三數(shù)學(xué)
高三英語(yǔ)
高三物理
高三化學(xué)
高三生物
高三政治
高三歷史
高三地理
高三學(xué)習(xí)
逍遙右腦記憶
>
教案設(shè)計(jì)
>
數(shù)學(xué)
>
高二
>
簡(jiǎn)單隨機(jī)抽樣
編輯:
逍遙路
關(guān)鍵詞:
高二
來(lái)源:
高中學(xué)習(xí)網(wǎng)
一、三維目標(biāo):
1、知識(shí)與技能:
正確理解隨機(jī)抽樣的概念,掌握抽簽法、隨機(jī)數(shù)表法的一般步驟;
2、過(guò)程與方法:
(1)能夠從現(xiàn)實(shí)生活或其他學(xué)科中提出具有一定價(jià)值的統(tǒng)計(jì)問(wèn)題;
(2)在解決統(tǒng)計(jì)問(wèn)題的過(guò)程中,學(xué)會(huì)用簡(jiǎn)單隨機(jī)抽樣的方法從總體中抽取樣本。
3、情感態(tài)度與價(jià)值觀:通過(guò)對(duì)現(xiàn)實(shí)生活和其他學(xué)科中統(tǒng)計(jì)問(wèn)題的提出,體會(huì)數(shù)學(xué)知識(shí)與現(xiàn)實(shí)世界及各學(xué)科知識(shí)之間的聯(lián)系,認(rèn)識(shí)數(shù)學(xué)的重要性。
二、重點(diǎn)與難點(diǎn):正確理解簡(jiǎn)單隨機(jī)抽樣的概念,掌握抽簽法及隨機(jī)數(shù)法的步驟,并能靈活應(yīng)用相關(guān)知識(shí)從總體中抽取樣本。
三、設(shè)想:
假設(shè)你作為一名食品衛(wèi)生工作人員,要對(duì)某食品店內(nèi)的一批小包裝餅干進(jìn)行衛(wèi)生達(dá)標(biāo)檢驗(yàn),你準(zhǔn)備怎樣做?
顯然,你只能從中抽取一定數(shù)量的餅干作為檢驗(yàn)的樣本。(為什么?)那么,應(yīng)當(dāng)怎樣獲取樣本呢?
【探究新知】
一、簡(jiǎn)單隨機(jī)抽樣的概念
一般地,設(shè)一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內(nèi)的各個(gè)個(gè)體被抽到的機(jī)會(huì)都相等,就把這種抽樣方法叫做簡(jiǎn)單隨機(jī)抽樣,這樣抽取的樣本,叫做簡(jiǎn)單隨機(jī)樣本。
【說(shuō)明】簡(jiǎn)單隨機(jī)抽樣必須具備下列特點(diǎn):
(1)簡(jiǎn)單隨機(jī)抽樣要求被抽取的樣本的總體個(gè)數(shù)N是有限的。
(2)簡(jiǎn)單隨機(jī)樣本數(shù)n小于等于樣本總體的個(gè)數(shù)N。
(3)簡(jiǎn)單隨機(jī)樣本是從總體中逐個(gè)抽取的。
(4)簡(jiǎn)單隨機(jī)抽樣是一種不放回的抽樣。
(5)簡(jiǎn)單隨機(jī)抽樣的每個(gè)個(gè)體入樣的可能性均為n/N。
思考?
下列抽樣的方式是否屬于簡(jiǎn)單隨機(jī)抽樣?為什么?
(1)從無(wú)限多個(gè)個(gè)體中抽取50個(gè)個(gè)體作為樣本。
(2)箱子里共有100個(gè)零件,從中選出10個(gè)零件進(jìn)行質(zhì)量檢驗(yàn),在抽樣操作中,從中任意取出一個(gè)零件進(jìn)行質(zhì)量檢驗(yàn)后,再把它放回箱子。
二、抽簽法和隨機(jī)數(shù)法
1、抽簽法的定義。
一般地,抽簽法就是把總體中的N個(gè)個(gè)體編號(hào),把號(hào)碼寫(xiě)在號(hào)簽上,將號(hào)簽放在一個(gè)容器中,攪拌均勻后,每次從中抽取一個(gè)號(hào)簽,連續(xù)抽取n次,就得到一個(gè)容量為n的樣本。
【說(shuō)明】抽簽法的一般步驟:
(1)將總體的個(gè)體編號(hào)。
(2)連續(xù)抽簽獲取樣本號(hào)碼。
思考?
你認(rèn)為抽簽法有什么優(yōu)點(diǎn)和缺點(diǎn):當(dāng)總體中的個(gè)體數(shù)很多時(shí),用抽簽法方便嗎?
2、隨機(jī)數(shù)法的定義:
利用隨機(jī)數(shù)表、隨機(jī)數(shù)骰子或計(jì)算機(jī)產(chǎn)生的隨機(jī)數(shù)進(jìn)行抽樣,叫隨機(jī)數(shù)表法,這里僅介紹隨機(jī)數(shù)表法。
怎樣利用隨機(jī)數(shù)表產(chǎn)生樣本呢?下面通過(guò)例子來(lái)說(shuō)明,假設(shè)我們要考察某公司生產(chǎn)的500克袋裝牛奶的質(zhì)量是否達(dá)標(biāo),現(xiàn)從800袋牛奶中抽取60袋進(jìn)行檢驗(yàn),利用隨機(jī)數(shù)表抽取樣本時(shí),可以按照下面的步驟進(jìn)行。
第一步,先將800袋牛奶編號(hào),可以編為000,001,…,799。
第二步,在隨機(jī)數(shù)表中任選一個(gè)數(shù),例如選出第8行第7列的數(shù)7(為了便于說(shuō)明,下面摘取了附表1的第6行至第10行)。
16 22 77 94 39 49 54 43 54 82 17 37 93 23 78
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38
57 60 86 32 44 09 47 27 96 54 49 17 46 09 62
87 35 20 96 43 84 26 34 91 64
21 76 33 50 25 83 92 12 06 76
12 86 73 58 07 44 39 52 38 79
15 51 00 13 42 99 66 02 79 54
90 52 84 77 27 08 02 73 43 28
第三步,從選定的數(shù)7開(kāi)始向右讀(讀數(shù)的方向也可以是向左、向上、向下等),得到一個(gè)三位數(shù)785,由于785<799,說(shuō)明號(hào)碼785在總體內(nèi),將它取出;繼續(xù)向右讀,得到916,由于916>799,將它去掉,按照這種方法繼續(xù)向右讀,又取出567,199,507,…,依次下去,直到樣本的60個(gè)號(hào)碼全部取出,這樣我們就得到一個(gè)容量為60的樣本。
【說(shuō)明】隨機(jī)數(shù)表法的步驟:
(1)將總體的個(gè)體編號(hào)。
(2)在隨機(jī)數(shù)表中選擇開(kāi)始數(shù)字。
(3)讀數(shù)獲取樣本號(hào)碼。
【例題精析】
例1:人們打橋牌時(shí),將洗好的撲克牌隨機(jī)確定一張為起始牌,這時(shí)按次序搬牌時(shí),對(duì)任何一家來(lái)說(shuō),都是從52張牌中抽取13張牌,問(wèn)這種抽樣方法是否是簡(jiǎn)單隨機(jī)抽樣?
[分析] 簡(jiǎn)單隨機(jī)抽樣的實(shí)質(zhì)是逐個(gè)地從總體中隨機(jī)抽取樣本,而這里只是隨機(jī)確定了起始張,其他各張牌雖然是逐張起牌,但是各張?jiān)谡l(shuí)手里已被確定,所以不是簡(jiǎn)單隨機(jī)抽樣。
例2:某車間工人加工一種軸100件,為了了解這種軸的直徑,要從中抽取10件軸在同一條件下測(cè)量,如何采用簡(jiǎn)單隨機(jī)抽樣的方法抽取樣本?
[分析] 簡(jiǎn)單隨機(jī)抽樣一般采用兩種方法:抽簽法和隨機(jī)數(shù)表法。
解法1:(抽簽法)將100件軸編號(hào)為1,2,…,100,并做好大小、形狀相同的號(hào)簽,分別寫(xiě)上這100個(gè)數(shù),將這些號(hào)簽放在一起,進(jìn)行均勻攪拌,接著連續(xù)抽取10個(gè)號(hào)簽,然后測(cè)量這個(gè)10個(gè)號(hào)簽對(duì)應(yīng)的軸的直徑。
解法2:(隨機(jī)數(shù)表法)將100件軸編號(hào)為00,01,…99,在隨機(jī)數(shù)表中選定一個(gè)起始位置,如取第21行第1個(gè)數(shù)開(kāi)始,選取10個(gè)為68,34,30,13,70,55,74,77,40,44,這10件即為所要抽取的樣本。
【課堂練習(xí)】P
【課堂小結(jié)】
1、簡(jiǎn)單隨機(jī)抽樣是一種最簡(jiǎn)單、最基本的抽樣方法,簡(jiǎn)單隨機(jī)抽樣有兩種選取個(gè)體的方法:放回和不放回,我們?cè)诔闃诱{(diào)查中用的是不放回抽樣,常用的簡(jiǎn)單隨機(jī)抽樣方法有抽簽法和隨機(jī)數(shù)法。
2、抽簽法的優(yōu)點(diǎn)是簡(jiǎn)單易行,缺點(diǎn)是當(dāng)總體的容量非常大時(shí),費(fèi)時(shí)、費(fèi)力,又不方便,如果標(biāo)號(hào)的簽攪拌得不均勻,會(huì)導(dǎo)致抽樣不公平,隨機(jī)數(shù)表法的優(yōu)點(diǎn)與抽簽法相同,缺點(diǎn)上當(dāng)總體容量較大時(shí),仍然不是很方便,但是比抽簽法公平,因此這兩種方法只適合總體容量較少的抽樣類型。
3、簡(jiǎn)單隨機(jī)抽樣每個(gè)個(gè)體入樣的可能性都相等,均為n/N,但是這里一定要將每個(gè)個(gè)體入樣的可能性、第n次每個(gè)個(gè)體入樣的可能性、特定的個(gè)體在第n次被抽到的可能性這三種情況區(qū)分開(kāi)業(yè),避免在解題中出現(xiàn)錯(cuò)誤。
【評(píng)價(jià)設(shè)計(jì)】
1、為了了解全校240名學(xué)生的身高情況,從中抽取40名學(xué)生進(jìn)行測(cè)量,下列說(shuō)法正確的是
A.總體是240 B、個(gè)體是每一個(gè)學(xué)生
C、樣本是40名學(xué)生 D、樣本容量是40
2、為了正確所加工一批零件的長(zhǎng)度,抽測(cè)了其中200個(gè)零件的長(zhǎng)度,在這個(gè)問(wèn)題中,200個(gè)零件的長(zhǎng)度是 ( )
A、總體 B、個(gè)體是每一個(gè)學(xué)生
C、總體的一個(gè)樣本 D、樣本容量
3、一個(gè)總體中共有200個(gè)個(gè)體,用簡(jiǎn)單隨機(jī)抽樣的方法從中抽取一個(gè)容量為20的樣本,則某一特定個(gè)體被抽到的可能性是 。
4、從3名男生、2名女生中隨機(jī)抽取2人,檢查數(shù)學(xué)成績(jī),則抽到的均為女生的可能性是 。
2.1.2 系統(tǒng)抽樣
一、三維目標(biāo):
1、知識(shí)與技能:
(1)正確理解系統(tǒng)抽樣的概念;
(2)掌握系統(tǒng)抽樣的一般步驟;
(3)正確理解系統(tǒng)抽樣與簡(jiǎn)單隨機(jī)抽樣的關(guān)系;
2、過(guò)程與方法:通過(guò)對(duì)實(shí)際問(wèn)題的探究,歸納應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的方法,理解分類討論的數(shù)學(xué)方法,
3、情感態(tài)度與價(jià)值觀:通過(guò)數(shù)學(xué)活動(dòng),感受數(shù)學(xué)對(duì)實(shí)際生活的需要,體會(huì)現(xiàn)實(shí)世界和數(shù)學(xué)知識(shí)的聯(lián)系。
二、重點(diǎn)與難點(diǎn):正確理解系統(tǒng)抽樣的概念,能夠靈活應(yīng)用系統(tǒng)抽樣的方法解決統(tǒng)計(jì)問(wèn)題。
三、設(shè)想:
【創(chuàng)設(shè)情境】:某學(xué)校為了了解高一年級(jí)學(xué)生對(duì)教師教學(xué)的意見(jiàn),打算從高一年級(jí)500名學(xué)生中抽取50名進(jìn)行調(diào)查,除了用簡(jiǎn)單隨機(jī)抽樣獲取樣本外,你能否設(shè)計(jì)其他抽取樣本的方法?
【探究新知】
一、系統(tǒng)抽樣的定義:
一般地,要從容量為N的總體中抽取容量為n的樣本,可將總體分成均衡的若干部分,然后按照預(yù)先制定的規(guī)則,從每一部分抽取一個(gè)個(gè)體,得到所需要的樣本,這種抽樣的方法叫做系統(tǒng)抽樣。
【說(shuō)明】由系統(tǒng)抽樣的定義可知系統(tǒng)抽樣有以下特證:
(1)當(dāng)總體容量N較大時(shí),采用系統(tǒng)抽樣。
(2)將總體分成均衡的若干部分指的是將總體分段,分段的間隔要求相等,因此,系統(tǒng)抽樣又稱等距抽樣,這時(shí)間隔一般為k=[ ].
(3)預(yù)先制定的規(guī)則指的是:在第1段內(nèi)采用簡(jiǎn)單隨機(jī)抽樣確定一個(gè)起始編號(hào),在此編號(hào)的基礎(chǔ)上加上分段間隔的整倍數(shù)即為抽樣編號(hào)。
思考?
(1)你能舉幾個(gè)系統(tǒng)抽樣的例子嗎?
(2)下列抽樣中不是系統(tǒng)抽樣的是 ( )
A、從標(biāo)有1~15號(hào)的15號(hào)的15個(gè)小球中任選3個(gè)作為樣本,按從小號(hào)到
大號(hào)排序,隨機(jī)確定起點(diǎn)i,以后為i+5, i+10(超過(guò)15則從1再數(shù)起)號(hào)入樣
B工廠生產(chǎn)的產(chǎn)品,用傳關(guān)帶將產(chǎn)品送入包裝車間前,檢驗(yàn)人員從傳送帶上每隔五分鐘抽一件產(chǎn)品檢驗(yàn)
C、搞某一市場(chǎng)調(diào)查,規(guī)定在商場(chǎng)門(mén)口隨機(jī)抽一個(gè)人進(jìn)行詢問(wèn),直到調(diào)查到事先規(guī)定的調(diào)查人數(shù)為止
D、電影院調(diào)查觀眾的某一指標(biāo),通知每排(每排人數(shù)相等)座位號(hào)為14的觀眾留下來(lái)座談
點(diǎn)撥:(2)c不是系統(tǒng)抽樣,因?yàn)槭孪炔恢揽傮w,抽樣方法不能保證每個(gè)個(gè)體按事先規(guī)定的概率入樣。
二、系統(tǒng)抽樣的一般步驟。
(1)采用隨機(jī)抽樣的方法將總體中的N個(gè)個(gè)編號(hào)。
(2)將整體按編號(hào)進(jìn)行分段,確定分段間隔k(k∈N,L≤k).
(3)在第一段用簡(jiǎn)單隨機(jī)抽樣確定起始個(gè)體的編號(hào)L(L∈N,L≤k)。
(4)按照一定的規(guī)則抽取樣本,通常是將起始編號(hào)L加上間隔k得到第2個(gè)個(gè)體編號(hào)L+K,再加上K得到第3個(gè)個(gè)體編號(hào)L+2K,這樣繼續(xù)下去,直到獲取整個(gè)樣本。
【說(shuō)明】從系統(tǒng)抽樣的步驟可以看出,系統(tǒng)抽樣是把一個(gè)問(wèn)題劃分成若干部分分塊解決,從而把復(fù)雜問(wèn)題簡(jiǎn)單化,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想。
【例題精析】
例1、某校高中三年級(jí)的295名學(xué)生已經(jīng)編號(hào)為1,2,……,295,為了了解學(xué)生的學(xué)習(xí)情況,要按1:5的比例抽取一個(gè)樣本,用系統(tǒng)抽樣的方法進(jìn)行抽取,并寫(xiě)出過(guò)程。
[分析]按1:5分段,每段5人,共分59段,每段抽取一人,關(guān)鍵是確定第1段的編號(hào)。
解:按照1:5的比例,應(yīng)該抽取的樣本容量為295÷5=59,我們把259名同學(xué)分成59組,每組5人,第一組是編號(hào)為1~5的5名學(xué)生,第2組是編號(hào)為6~10的5名學(xué)生,依次下去,59組是編號(hào)為291~295的5名學(xué)生。采用簡(jiǎn)單隨機(jī)抽樣的方法,從第一組5名學(xué)生中抽出一名學(xué)生,不妨設(shè)編號(hào)為k(1≤k≤5),那么抽取的學(xué)生編號(hào)為k+5L(L=0,1,2,……,58),得到59個(gè)個(gè)體作為樣本,如當(dāng)k=3時(shí)的樣本編號(hào)為3,8,13,……,288,293。
例2、從憶編號(hào)為1~50的50枚最新研制的某種型號(hào)的導(dǎo)彈中隨機(jī)抽取5枚來(lái)進(jìn)行發(fā)射實(shí)驗(yàn),若采用每部分選取的號(hào)碼間隔一樣的系統(tǒng)抽樣方法,則所選取5枚導(dǎo)彈的編號(hào)可能是
A.5,10,15,20,25 B、3,13,23,33,43
C.1,2,3,4,5 D、2,4,6,16,32
[分析]用系統(tǒng)抽樣的方法抽取至的導(dǎo)彈編號(hào)應(yīng)該k,k+d,k+2d,k+3d,k+4d,其中d=50/5=10,k是1到10中用簡(jiǎn)單隨機(jī)抽樣方法得到的數(shù),因此只有選項(xiàng)B滿足要求,故選B。
【課堂練習(xí)】P49 練習(xí)1. 2. 3
【課堂小結(jié)】
1、在抽樣過(guò)程中,當(dāng)總體中個(gè)體較多時(shí),可采用系統(tǒng)抽樣的方法進(jìn)行抽樣,系統(tǒng)抽樣的步驟為:
(1)采用隨機(jī)的方法將總體中個(gè)體編號(hào);
(2)將整體編號(hào)進(jìn)行分段,確定分段間隔k(k∈N);
(3)在第一段內(nèi)采用簡(jiǎn)單隨機(jī)抽樣的方法確定起始個(gè)體編號(hào)L;
(4)按照事先預(yù)定的規(guī)則抽取樣本。
2、在確定分段間隔k時(shí)應(yīng)注意:分段間隔k為整數(shù),當(dāng) 不是整數(shù)時(shí),應(yīng)采用等可能剔除的方剔除部分個(gè)體,以獲得整數(shù)間隔k。
【評(píng)價(jià)設(shè)計(jì)】
1、從2005個(gè)編號(hào)中抽取20個(gè)號(hào)碼入樣,采用系統(tǒng)抽樣的方法,則抽樣的間隔為 ( )
A.99 B、99,5
C.100 D、100,5
2、從學(xué)號(hào)為0~50的高一某班50名學(xué)生中隨機(jī)選取5名同學(xué)參加數(shù)學(xué)測(cè)試,采用系統(tǒng)抽樣的方法,則所選5名學(xué)生的學(xué)號(hào)可能是 ( )
A.1,2,3,4,5 B、5,16,27,38,49
C.2, 4, 6, 8, 10 D、4,13,22,31,40
3、采用系統(tǒng)抽樣從個(gè)體數(shù)為83的總體中抽取一個(gè)樣本容量為10的樣本,那么每個(gè)個(gè)體人樣的可能性為 ( )
A.8 B.8,3
C.8.5 D.9
4、某小禮堂有25排座位,每排20個(gè)座位,一次心理學(xué)講座,禮堂中坐滿了學(xué)生,會(huì)后為了了解有關(guān)情況,留下座位號(hào)是15的所有25名學(xué)生進(jìn)行測(cè)試,這里運(yùn)用的是 抽樣方法。
5、某單位的在崗工作為624人,為了調(diào)查工作上班時(shí),從家到單位的路上平均所用的時(shí)間,決定抽取10%的工作調(diào)查這一情況,如何采用系統(tǒng)抽樣的方法完成這一抽樣?
2.1.3 分層抽樣
一、三維目標(biāo):
1、知識(shí)與技能:
(1)正確理解分層抽樣的概念;
(2)掌握分層抽樣的一般步驟;
(3)區(qū)分簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣和分層抽樣,并選擇適當(dāng)正確的方法進(jìn)行抽樣。
2、過(guò)程與方法:通過(guò)對(duì)現(xiàn)實(shí)生活中實(shí)際問(wèn)題進(jìn)行分層抽樣,感知應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的方法。
3、情感態(tài)度與價(jià)值觀:通過(guò)對(duì)統(tǒng)計(jì)學(xué)知識(shí)的研究,感知數(shù)學(xué)知識(shí)中“估計(jì)
與“精確”性的矛盾統(tǒng)一,培養(yǎng)學(xué)生的辯證唯物主義的世界觀與價(jià)值觀。
二、重點(diǎn)與難點(diǎn):正確理解分層抽樣的定義,靈活應(yīng)用分層抽樣抽取樣本,并恰當(dāng)?shù)倪x擇三種抽樣方法解決現(xiàn)實(shí)生活中的抽樣問(wèn)題。
三、教學(xué)設(shè)想:
【創(chuàng)設(shè)情景】
假設(shè)某地區(qū)有高中生2400人,初中生10900人,小學(xué)生11000人,此地
教育部門(mén)為了了解本地區(qū)中小學(xué)的近視情況及其形成原因,要從本地區(qū)的
小學(xué)生中抽取1%的學(xué)生進(jìn)行調(diào)查,你認(rèn)為應(yīng)當(dāng)怎樣抽取樣本?
【探究新知】
一、分層抽樣的定義。
一般地,在抽樣時(shí),將總體分成互不交叉的層,然后按照一定的比例,從各層獨(dú)立地抽取一定數(shù)量的個(gè)體,將各層取出的個(gè)體合在一起作為樣本,這種抽樣的方法叫分層抽樣。
【說(shuō)明】分層抽樣又稱類型抽樣,應(yīng)用分層抽樣應(yīng)遵循以下要求:
(1)分層:將相似的個(gè)體歸人一類,即為一層,分層要求每層的各個(gè)個(gè)體互不交叉,即遵循不重復(fù)、不遺漏的原則。
(2)分層抽樣為保證每個(gè)個(gè)體等可能入樣,需遵循在各層中進(jìn)行簡(jiǎn)單隨機(jī)抽樣,每層樣本數(shù)量與每層個(gè)體數(shù)量的比與這層個(gè)體數(shù)量與總體容量的比相等。
二、分層抽樣的步驟:
(1)分層:按某種特征將總體分成若干部分。
(2)按比例確定每層抽取個(gè)體的個(gè)數(shù)。
(3)各層分別按簡(jiǎn)單隨機(jī)抽樣的方法抽取。
(4)綜合每層抽樣,組成樣本。
【說(shuō)明】
(1)分層需遵循不重復(fù)、不遺漏的原則。
(2)抽取比例由每層個(gè)體占總體的比例確定。
(3)各層抽樣按簡(jiǎn)單隨機(jī)抽樣進(jìn)行。
探究交流
(1)分層抽樣又稱類型抽樣,即將相似的個(gè)體歸入一類(層),然后每層抽取若干個(gè)體構(gòu)成樣本,所以分層抽樣為保證每個(gè)個(gè)體等可能入樣,必須進(jìn)行 ( )
A、每層等可能抽樣
B、每層不等可能抽樣
C、所有層按同一抽樣比等可能抽樣
(2)如果采用分層抽樣,從個(gè)體數(shù)為N的總體中抽取一個(gè)容量為n
樣本,那么每個(gè)個(gè)體被抽到的可能性為 ( )
A. B. C. D.
點(diǎn)撥:
(1)保證每個(gè)個(gè)體等可能入樣是簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣、分層抽
共同的特征,為了保證這一點(diǎn),分層時(shí)用同一抽樣比是必不可少的,故此選C。
(2)根據(jù)每個(gè)個(gè)體都等可能入樣,所以其可能性本容量與總體容量
比,故此題選C。
知識(shí)點(diǎn)2 簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣、分層抽樣的比較
類 別共同點(diǎn)各自特點(diǎn)聯(lián) 系適 用
范 圍
簡(jiǎn) 單
隨 機(jī)
抽 樣
(1)抽樣過(guò)程中每個(gè)個(gè)體被抽到的可能性相等
(2)每次抽出個(gè)體后不再將它放回,即不放回抽樣從總體中逐個(gè)抽取總體個(gè)數(shù)較少
將總體均分成幾部 分,按預(yù)先制定的規(guī)則在各部分抽取在起始部分
樣時(shí)采用簡(jiǎn)
隨機(jī)抽樣總體個(gè)數(shù)較多
系 統(tǒng)
抽 樣
將總體分成幾層,
分層進(jìn)行抽取分層抽樣時(shí)采用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣總體由差異明顯的幾部分組成
分 層
抽 樣
【例選精析】
例1、某高中共有900人,其中高一年級(jí)300人,高二年級(jí)200人,高三年級(jí)400人,現(xiàn)采用分層抽樣抽取容量為45的樣本,那么高一、高二、高三各年級(jí)抽取的人數(shù)分別為
A.15,5,25 B.15,15,15
C.10,5,30 D15,10,20
[分析]因?yàn)?00:200:400=3:2:4,于是將45分成3:2:4的三部分。設(shè)三部分各抽取的個(gè)體數(shù)分別為3x,2x,4x,由3x+2x+4x=45,得x=5,故高一、高二、高三各年級(jí)抽取的人數(shù)分別為15,10,20,故選D。
例2:一個(gè)地區(qū)共有5個(gè)鄉(xiāng)鎮(zhèn),人口3萬(wàn)人,其中人口比例為3:2:5:2:3,從3萬(wàn)人中抽取一個(gè)300人的樣本,分析某種疾病的發(fā)病率,已知這種疾病與不同的地理位置及水土有關(guān),問(wèn)應(yīng)采取什么樣的方法?并寫(xiě)出具體過(guò)程。
[分析]采用分層抽樣的方法。
解:因?yàn)榧膊∨c地理位置和水土均有關(guān)系,所以不同鄉(xiāng)鎮(zhèn)的發(fā)病情況差異明顯,因而采用分層抽樣的方法,具體過(guò)程如下:
(1)將3萬(wàn)人分為5層,其中一個(gè)鄉(xiāng)鎮(zhèn)為一層。
(2)按照樣本容量的比例隨機(jī)抽取各鄉(xiāng)鎮(zhèn)應(yīng)抽取的樣本。
300×3/15=60(人),300×2/15=100(人),300×2/15=40(人),300×2/15=60(人),因此各鄉(xiāng)鎮(zhèn)抽取人數(shù)分別為60人、40人、100人、40人、60 人。
(3)將300人組到一起,即得到一個(gè)樣本。
【課堂練習(xí)】P52 練習(xí)1. 2. 3
【課堂小結(jié)】
1、分層抽樣是當(dāng)總體由差異明顯的幾部分組成時(shí)采用的抽樣方法,進(jìn)行分層抽樣時(shí)應(yīng)注意以下幾點(diǎn):
(1)、分層抽樣中分多少層、如何分層要視具體情況而定,總的原則是,層內(nèi)樣本的差異要小,面層之間的樣本差異要大,且互不重疊。
(2)為了保證每個(gè)個(gè)體等可能入樣,所有層應(yīng)采用同一抽樣比等可能抽樣。
(3)在每層抽樣時(shí),應(yīng)采用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣的方法進(jìn)行抽樣。
2、分層抽樣的優(yōu)點(diǎn)是:使樣本具有較強(qiáng)的代表性,并且抽樣過(guò)程中可綜合選用各種抽樣方法,因此分層抽樣是一種實(shí)用、操作性強(qiáng)、應(yīng)用比較廣泛的抽樣方法。
【評(píng)論設(shè)計(jì)】
1、某單位有老年人28人,中年人54人,青年人81人,為了調(diào)查他們的身體情況,需從他們中抽取一個(gè)容量為36的樣本,則適合的抽取方法是 ( )
A.簡(jiǎn)單隨機(jī)抽樣
B.系統(tǒng)抽樣
C.分層抽樣
D.先從老人中剔除1人,然后再分層抽樣
2、某校有500名學(xué)生,其中O型血的有200人,A型血的人有125人,B型血的有125人,AB型血的有50人,為了研究血型與色弱的關(guān)系,要從中抽取一個(gè)20人的樣本,按分層抽樣,O型血應(yīng)抽取的人數(shù)為 人,A型血應(yīng)抽取的人數(shù)為 人,B型血應(yīng)抽取的人數(shù)為 人,AB型血應(yīng)抽取的人數(shù)為 人。
3、某中學(xué)高一年級(jí)有學(xué)生600人,高二年級(jí)有學(xué)生450人,高三年級(jí)有學(xué)生750人,每個(gè)學(xué)生被抽到的可能性均為0.2,若該校取一個(gè)容量為n的樣本,則n= 。
4、對(duì)某單位1000名職工進(jìn)行某項(xiàng)專門(mén)調(diào)查,調(diào)查的項(xiàng)目與職工任職年限有關(guān),人事部門(mén)提供了如下資料:
任職年限5年以下5年至10年10年以上
人數(shù)300500200
試?yán)蒙鲜鲑Y料設(shè)計(jì)一個(gè)抽樣比為1/10的抽樣方法。
2.2.1用樣本的頻率分布估計(jì)總體分布(2課時(shí))
一、三維目標(biāo):
1、知識(shí)與技能
(1) 通過(guò)實(shí)例體會(huì)分布的意義和作用。
(2)在表示樣本數(shù)據(jù)的過(guò)程中,學(xué)會(huì)列頻率分布表,畫(huà)頻率分布直方圖、頻率折線圖和莖葉圖。
(3)通過(guò)實(shí)例體會(huì)頻率分布直方圖、頻率折線圖、莖葉圖的各自特征,從而恰當(dāng)?shù)剡x擇上述方法分析樣本的分布,準(zhǔn)確地做出總體估計(jì)。
2、過(guò)程與方法
通過(guò)對(duì)現(xiàn)實(shí)生活的探究,感知應(yīng)用數(shù)學(xué)知識(shí)解決問(wèn)題的方法,理解數(shù)形結(jié)合的數(shù)學(xué)思想和邏輯推理的數(shù)學(xué)方法。
3、情感態(tài)度與價(jià)值觀
通過(guò)對(duì)樣本分析和總體估計(jì)的過(guò)程,感受數(shù)學(xué)對(duì)實(shí)際生活的需要,認(rèn)識(shí)到數(shù)學(xué)知識(shí)源于生活并指導(dǎo)生活的事實(shí),體會(huì)數(shù)學(xué)知識(shí)與現(xiàn)實(shí)世界的聯(lián)系。
二、重點(diǎn)與難點(diǎn)
重點(diǎn):會(huì)列頻率分布表,畫(huà)頻率分布直方圖、頻率折線圖和莖葉圖。
難點(diǎn):能通過(guò)樣本的頻率分布估計(jì)總體的分布。
三、教學(xué)設(shè)想
【創(chuàng)設(shè)情境】
在NBA的2004賽季中,甲、乙兩名籃球運(yùn)動(dòng)員每場(chǎng)比賽得分的原始記錄如下?
甲運(yùn)動(dòng)員得分?12,15,20,25,31,31,36,36,37,39,44,49,50
乙運(yùn)動(dòng)員得分?8,13,14,16,23,26,28,38,39,51,31,29,33
請(qǐng)問(wèn)從上面的數(shù)據(jù)中你能否看出甲,乙兩名運(yùn)動(dòng)員哪一位發(fā)揮比較穩(wěn)定?
如何根據(jù)這些數(shù)據(jù)作出正確的判斷呢?這就是我們這堂課要研究、學(xué)習(xí)的主要內(nèi)容——用樣本的頻率分布估計(jì)總體分布(板出課題)。
【探究新知】
〖探究〗:P55
我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一,城市缺水問(wèn)題較為突出,某市政府為了節(jié)約生活用水,計(jì)劃在本市試行居民生活用水定額管理,即確定一個(gè)居民月用水量標(biāo)準(zhǔn)a,用水量不超過(guò)a的部分按平價(jià)收費(fèi),超出a的部分按議價(jià)收費(fèi)。如果希望大部分居民的日常生活不受影響,那么標(biāo)準(zhǔn)a定為多少比較合理呢 ?你認(rèn)為,為了了較為合理地確定出這個(gè)標(biāo)準(zhǔn),需要做哪些工作?(讓學(xué)生展開(kāi)討論)
為了制定一個(gè)較為合理的標(biāo)準(zhǔn)a,必須先了解全市居民日常用水量的分布情況,比如月均用水量在哪個(gè)范圍的居民最多,他們占全市居民的百分比情況等。因此采用抽樣調(diào)查的方式,通過(guò)分析樣本數(shù)據(jù)來(lái)估計(jì)全市居民用水量的分布情況。(如課本P56)
分析數(shù)據(jù)的一種基本方法是用圖將它們畫(huà)出來(lái),或者用緊湊的表格改變數(shù)據(jù)的排列方式,作圖可以達(dá)到兩個(gè)目的,一是從數(shù)據(jù)中提取信息,二是利用圖形傳遞信息。表格則是通過(guò)改變數(shù)據(jù)的構(gòu)成形式,為我們提供解釋數(shù)據(jù)的新方式。
下面我們學(xué)習(xí)的頻率分布表和頻率分布圖,則是從各個(gè)小組數(shù)據(jù)在樣本容量中所占比例大小的角度,來(lái)表示數(shù)據(jù)分布的規(guī)律?梢宰屛覀兏宄目吹秸麄(gè)樣本數(shù)據(jù)的頻率分布情況。
〈一〉頻率分布的概念:
頻率分布是指一個(gè)樣本數(shù)據(jù)在各個(gè)小范圍內(nèi)所占比例的大小。一般用頻率分布直方圖反映樣本的頻率分布。其一般步驟為:
(1)計(jì)算一組數(shù)據(jù)中最大值與最小值的差,即求極差
(2)決定組距與組數(shù)
(3)將數(shù)據(jù)分組
(4)列頻率分布表
(5)畫(huà)頻率分布直方圖
以課本P56制定居民用水標(biāo)準(zhǔn)問(wèn)題為例,經(jīng)過(guò)以上幾個(gè)步驟畫(huà)出頻率分布直方圖。(讓學(xué)生自己動(dòng)手作圖)
頻率分布直方圖的特征:
(1)從頻率分布直方圖可以清楚的看出數(shù)據(jù)分布的總體趨勢(shì)。
(2)從頻率分布直方圖得不出原始的數(shù)據(jù)內(nèi)容,把數(shù)據(jù)表示成直方圖后,原有的具體數(shù)據(jù)信息就被抹掉了。
〖探究〗:同樣一組數(shù)據(jù),如果組距不同,橫軸、縱軸的單位不同,得到的圖和形狀也會(huì)不同。不同的形狀給人以不同的印象,這種印象有時(shí)會(huì)影響我們對(duì)總體的判斷,分別以0.1和1為組距重新作圖,然后談?wù)勀銓?duì)圖的印象?(把學(xué)生分成兩大組進(jìn)行,分別作出兩種組距的圖,然后組織同學(xué)們對(duì)所作圖不同的看法進(jìn)行交流……)
接下來(lái)請(qǐng)同學(xué)們思考下面這個(gè)問(wèn)題:
〖思考〗:如果當(dāng)?shù)卣M?5%以上的居民每月的用水量不超出標(biāo)準(zhǔn),根據(jù)頻率分布表2-2和頻率分布直方圖2.2-1,(見(jiàn)課本P57)你能對(duì)制定月用水量標(biāo)準(zhǔn)提出建議嗎?(讓學(xué)生仔細(xì)觀察表和圖)
〈二〉頻率分布折線圖、總體密度曲線
1.頻率分布折線圖的定義:
連接頻率分布直方圖中各小長(zhǎng)方形上端的中點(diǎn),就得到頻率分布折線圖。
2.總體密度曲線的定義:
在樣本頻率分布直方圖中,相應(yīng)的頻率折線圖會(huì)越來(lái)越接近于一條光滑曲線,統(tǒng)計(jì)中稱這條光滑曲線為總體密度曲線。它能夠精確地反映了總體在各個(gè)范圍內(nèi)取值的百分比,它能給我們提供更加精細(xì)的信息。(見(jiàn)課本P60)
〖思考〗:
1.對(duì)于任何一個(gè)總體,它的密度曲線是不是一定存在?為什么?
2.對(duì)于任何一個(gè)總體,它的密度曲線是否可以被非常準(zhǔn)確地畫(huà)出來(lái)?為什么?
實(shí)際上,盡管有些總體密度曲線是餓、客觀存在的,但一般很難想函數(shù)圖象那樣準(zhǔn)確地畫(huà)出來(lái),我們只能用樣本的頻率分布對(duì)它進(jìn)行估計(jì),一般來(lái)說(shuō),樣本容量越大,這種估計(jì)就越精確.
〈三〉莖葉圖
1.莖葉圖的概念:
當(dāng)數(shù)據(jù)是兩位有效數(shù)字時(shí),用中間的數(shù)字表示十位數(shù),即第一個(gè)有效數(shù)字,兩邊的數(shù)字表示個(gè)位數(shù),即第二個(gè)有效數(shù)字,它的中間部分像植物的莖,兩邊部分像植物莖上長(zhǎng)出來(lái)的葉子,因此通常把這樣的圖叫做莖葉圖。(見(jiàn)課本P61例子)
2.莖葉圖的特征:
(1)用莖葉圖表示數(shù)據(jù)有兩個(gè)優(yōu)點(diǎn):一是從統(tǒng)計(jì)圖上沒(méi)有原始數(shù)據(jù)信息的損失,所有數(shù)據(jù)信息都可以從莖葉圖中得到;二是莖葉圖中的數(shù)據(jù)可以隨時(shí)記錄,隨時(shí)添加,方便記錄與表示。
(2)莖葉圖只便于表示兩位有效數(shù)字的數(shù)據(jù),而且莖葉圖只方便記錄兩組的數(shù)據(jù),兩個(gè)以上的數(shù)據(jù)雖然能夠記錄,但是沒(méi)有表示兩個(gè)記錄那么直觀,清晰。
【例題精析】
〖例1〗:下表給出了某校500名12歲男孩中用隨機(jī)抽樣得出的120人的身高
(單位cm)
(1)列出樣本頻率分布表?
(2)一畫(huà)出頻率分布直方圖;
(3)估計(jì)身高小于134cm的人數(shù)占總?cè)藬?shù)的百分比.。
分析:根據(jù)樣本頻率分布表、頻率分布直方圖的一般步驟解題。
解:(1)樣本頻率分布表如下:
(2)其頻率分布直方圖如下:
(3)由樣本頻率分布表可知身高小于134cm 的男孩出現(xiàn)的頻率為0.04+0.07+0.08=0.19,所以我們估計(jì)身高小于134cm的人數(shù)占總?cè)藬?shù)的19%.
〖例2〗:為了了解高一學(xué)生的體能情況,某校抽取部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)次測(cè)試,將所得數(shù)據(jù)整理后,畫(huà)出頻率分布直方圖(如圖),圖中從左到右各小長(zhǎng)方形面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.
(1)第二小組的頻率是多少?樣本容量是多少?
(2)若次數(shù)在110以上(含110次)為達(dá)標(biāo),試估計(jì)該學(xué)校全體高一學(xué)生的達(dá)標(biāo)率是多少?
(3)在這次測(cè)試中,學(xué)生跳繩次數(shù)的中位數(shù)落在哪個(gè)小組內(nèi)?請(qǐng)說(shuō)明理由。
分析:在頻率分布直方圖中,各小長(zhǎng)方形的面積等于相應(yīng)各組的頻率,小長(zhǎng)方形的高與頻數(shù)成正比,各組頻數(shù)之和等于樣本容量,頻率之和等于1。
解:(1)由于頻率分布直方圖以面積的形式反映了數(shù)據(jù)落在各小組內(nèi)的頻率大小,
因此第二小組的頻率為:
又因?yàn)轭l率=
所以
(2)由圖可估計(jì)該學(xué)校高一學(xué)生的達(dá)標(biāo)率約為
(3)由已知可得各小組的頻數(shù)依次為6,12,51,45,27,9,所以前三組的頻數(shù)之和為69,前四組的頻數(shù)之和為114,所以跳繩次數(shù)的中位數(shù)落在第四小組內(nèi)。
【課堂精練】
P61 練習(xí) 1. 2. 3
【課堂小結(jié)】
1.總體分布指的是總體取值的頻率分布規(guī)律,由于總體分布不易知道,因此我們往往用樣本的頻率分布去估計(jì)總體的分布。
2.總體的分布分兩種情況:當(dāng)總體中的個(gè)體取值很少時(shí),用莖葉圖估計(jì)總體的分布;當(dāng)總體中的個(gè)體取值較多時(shí),將樣本數(shù)據(jù)恰當(dāng)分組,用各組的頻率分布描述總體的分布,方法是用頻率分布表或頻率分布直方圖。
【評(píng)價(jià)設(shè)計(jì)】
1.P72 習(xí)題2.2 A組 1、 2
2.2.2用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征(2課時(shí))
一、三維目標(biāo):
1、知識(shí)與技能
(1)正確理解樣本數(shù)據(jù)標(biāo)準(zhǔn)差的意義和作用,學(xué)會(huì)計(jì)算數(shù)據(jù)的標(biāo)準(zhǔn)差。
(2)能根據(jù)實(shí)際問(wèn)題的需要合理地選取樣本,從樣本數(shù)據(jù)中提取基本的數(shù)字特征(如平均數(shù)、標(biāo)準(zhǔn)差),并做出合理的解釋。
(3)會(huì)用樣本的基本數(shù)字特征估計(jì)總體的基本數(shù)字特征。
(4)形成對(duì)數(shù)據(jù)處理過(guò)程進(jìn)行初步評(píng)價(jià)的意識(shí)。
2、過(guò)程與方法
在解決統(tǒng)計(jì)問(wèn)題的過(guò)程中,進(jìn)一步體會(huì)用樣本估計(jì)總體的思想,理解數(shù)形結(jié)合的數(shù)學(xué)思想和邏輯推理的數(shù)學(xué)方法。
3、情感態(tài)度與價(jià)值觀
會(huì)用隨機(jī)抽樣的方法和樣本估計(jì)總體的思想解決一些簡(jiǎn)單的實(shí)際問(wèn)題,認(rèn)識(shí)統(tǒng)計(jì)的作用,能夠辨證地理解數(shù)學(xué)知識(shí)與現(xiàn)實(shí)世界的聯(lián)系。
二、重點(diǎn)與難點(diǎn)
重點(diǎn):用樣本平均數(shù)和標(biāo)準(zhǔn)差估計(jì)總體的平均數(shù)與標(biāo)準(zhǔn)差。
難點(diǎn):能應(yīng)用相關(guān)知識(shí)解決簡(jiǎn)單的實(shí)際問(wèn)題。
三、教學(xué)設(shè)想
【創(chuàng)設(shè)情境】
在一次射擊比賽中,甲、乙兩名運(yùn)動(dòng)員各射擊10次,命中環(huán)數(shù)如下?
甲運(yùn)動(dòng)員?7,8,6,8,6,5,8,10,7,4;
乙運(yùn)動(dòng)員?9,5,7,8,7,6,8,6,7,7.
觀察上述樣本數(shù)據(jù),你能判斷哪個(gè)運(yùn)動(dòng)員發(fā)揮的更穩(wěn)定些嗎?為了從整體上更好地把握總體的規(guī)律,我們要通過(guò)樣本的數(shù)據(jù)對(duì)總體的數(shù)字特征進(jìn)行研究。——用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征(板出課題)。
【探究新知】
<一>、眾數(shù)、中位數(shù)、平均數(shù)
〖探究〗:P62
(1)怎樣將各個(gè)樣本數(shù)據(jù)匯總為一個(gè)數(shù)值,并使它成為樣本數(shù)據(jù)的“中心點(diǎn)”?
(2)能否用一個(gè)數(shù)值來(lái)描寫(xiě)樣本數(shù)據(jù)的離散程度?(讓學(xué)生回憶初中所學(xué)的一些統(tǒng)計(jì)知識(shí),思考后展開(kāi)討論)
初中我們?cè)?jīng)學(xué)過(guò)眾數(shù),中位數(shù),平均數(shù)等各種數(shù)字特征,應(yīng)當(dāng)說(shuō),這些數(shù)字都能夠?yàn)槲覀兲峁╆P(guān)于樣本數(shù)據(jù)的特征信息。例如前面一節(jié)在調(diào)查100位居民的月均用水量的問(wèn)題中,從這些樣本數(shù)據(jù)的頻率分布直方圖可以看出,月均用水量的眾數(shù)是2.25t(最高的矩形的中點(diǎn))(圖略見(jiàn)課本第62頁(yè))它告訴我們,該市的月均用水量為2. 25t的居民數(shù)比月均用水量為其他值的居民數(shù)多,但它并沒(méi)有告訴我們到底多多少。
〖提問(wèn)〗:請(qǐng)大家翻回到課本第56頁(yè)看看原來(lái)抽樣的數(shù)據(jù),有沒(méi)有2.25 這個(gè)數(shù)值呢?根據(jù)眾數(shù)的定義,2.25怎么會(huì)是眾數(shù)呢?為什么?(請(qǐng)大家思考作答)
分析:這是因?yàn)闃颖緮?shù)據(jù)的頻率分布直方圖把原始的一些數(shù)據(jù)給遺失的原因,而2.25是由樣本數(shù)據(jù)的頻率分布直方圖得來(lái)的,所以存在一些偏差。
〖提問(wèn)〗:那么如何從頻率分布直方圖中估計(jì)中位數(shù)呢?
分析:在樣本數(shù)據(jù)中,有50%的個(gè)體小于或等于中位數(shù),也有50%的個(gè)體大于或等于中位數(shù)。因此,在頻率分布直方圖中,矩形的面積大小正好表示頻率的大小,即中位數(shù)左邊和右邊的直方圖的面積應(yīng)該相等。由此可以估計(jì)出中位數(shù)的值為2.02。(圖略見(jiàn)課本63頁(yè)圖2.2-6)
〖思考〗:2.02這個(gè)中位數(shù)的估計(jì)值,與樣本的中位數(shù)值2.0不一樣,你能解釋其中的原因嗎?(原因同上:樣本數(shù)據(jù)的頻率分布直方圖把原始的一些數(shù)據(jù)給遺失了)
(課本63頁(yè)圖2.2-6)顯示,大部分居民的月均用水量在中部(2.02t左右),但是也有少數(shù)居民的月均用水量特別高,顯然,對(duì)這部分居民的用水量作出限制是非常合理的。
〖思考〗:中位數(shù)不受少數(shù)幾個(gè)極端值的影響,這在某些情況下是一個(gè)優(yōu)點(diǎn),但是它對(duì)極端值的不敏感有時(shí)也會(huì)成為缺點(diǎn),你能舉例說(shuō)明嗎?(讓學(xué)生討論,并舉例)
<二>、標(biāo)準(zhǔn)差、方差
1.標(biāo)準(zhǔn)差
平均數(shù)為我們提供了樣本數(shù)據(jù)的重要信息,可是,有時(shí)平均數(shù)也會(huì)使我們作出對(duì)總體的片面判斷。某地區(qū)的統(tǒng)計(jì)顯示,該地區(qū)的中學(xué)生的平均身高為176?,給我們的印象是該地區(qū)的中學(xué)生生長(zhǎng)發(fā)育好,身高較高。但是,假如這個(gè)平均數(shù)是從五十萬(wàn)名中學(xué)生抽出的五十名身高較高的學(xué)生計(jì)算出來(lái)的話,那么,這個(gè)平均數(shù)就不能代表該地區(qū)所有中學(xué)生的身體素質(zhì)。因此,只有平均數(shù)難以概括樣本數(shù)據(jù)的實(shí)際狀態(tài)。
例如,在一次射擊選拔比賽中,甲、乙兩名運(yùn)動(dòng)員各射擊10次,命中環(huán)數(shù)如下?
甲運(yùn)動(dòng)員?7,8,6,8,6,5,8,10,7,4;
乙運(yùn)動(dòng)員?9,5,7,8,7,6,8,6,7,7.
觀察上述樣本數(shù)據(jù),你能判斷哪個(gè)運(yùn)動(dòng)員發(fā)揮的更穩(wěn)定些嗎?如果你是教練,選哪位選手去參加正式比賽?
我們知道, 。
兩個(gè)人射擊的平均成績(jī)是一樣的。那么,是否兩個(gè)人就沒(méi)有水平差距呢?(觀察P66圖2.2-8)直觀上看,還是有差異的。很明顯,甲的成績(jī)比較分散,乙的成績(jī)相對(duì)集中,因此我們從另外的角度來(lái)考察這兩組數(shù)據(jù)。
考察樣本數(shù)據(jù)的分散程度的大小,最常用的統(tǒng)計(jì)量是標(biāo)準(zhǔn)差。標(biāo)準(zhǔn)差是樣本數(shù)據(jù)到平均數(shù)的一種平均距離,一般用s表示。
樣本數(shù)據(jù) 的標(biāo)準(zhǔn)差的算法:
(1)、算出樣本數(shù)據(jù)的平均數(shù) 。
(2)、算出每個(gè)樣本數(shù)據(jù)與樣本數(shù)據(jù)平均數(shù)的差:
(3)、算出(2)中 的平方。
(4)、算出(3)中n個(gè)平方數(shù)的平均數(shù),即為樣本方差。
(5)、算出(4)中平均數(shù)的算術(shù)平方根,,即為樣本標(biāo)準(zhǔn)差。
其計(jì)算公式為:
顯然,標(biāo)準(zhǔn)差較大,數(shù)據(jù)的離散程度較大;標(biāo)準(zhǔn)差較小,數(shù)據(jù)的離散程度較小。
〖提問(wèn)〗:標(biāo)準(zhǔn)差的取值范圍是什么?標(biāo)準(zhǔn)差為0的樣本數(shù)據(jù)有什么特點(diǎn)?
從標(biāo)準(zhǔn)差的定義和計(jì)算公式都可以得出: 。當(dāng) 時(shí),意味著所有的樣本數(shù)據(jù)都等于樣本平均數(shù)。
(在課堂上,如果條件允許的話,可以給學(xué)生簡(jiǎn)單的介紹一下利用計(jì)算機(jī)來(lái)計(jì)算標(biāo)準(zhǔn)差的方法。)
2.方差
從數(shù)學(xué)的角度考慮,人們有時(shí)用標(biāo)準(zhǔn)差的平方 (即方差)來(lái)代替標(biāo)準(zhǔn)差,作為測(cè)量樣本數(shù)據(jù)分散程度的工具:
在刻畫(huà)樣本數(shù)據(jù)的分散程度上,方差和標(biāo)準(zhǔn)差是一樣的,但在解決實(shí)際問(wèn)題時(shí),一般多采用標(biāo)準(zhǔn)差。
【例題精析】
〖例1〗:畫(huà)出下列四組樣本數(shù)據(jù)的直方圖,說(shuō)明他們的異同點(diǎn)。
(1)5,5,5,5,5,5,5,5,5
(2)4,4,4,5,5,5,6,6,6
(3)3,3,4,4,5,6,6,7,7
(4)2,2,2,2,5,8,8,8,8
分析:先畫(huà)出數(shù)據(jù)的直方圖,根據(jù)樣本數(shù)據(jù)算出樣本數(shù)據(jù)的平均數(shù),利用標(biāo)準(zhǔn)差的計(jì)算公式即可算出每一組數(shù)據(jù)的標(biāo)準(zhǔn)差。
解:(圖略,可查閱課本P68)
四組數(shù)據(jù)的平均數(shù)都是5.0,標(biāo)準(zhǔn)差分別為:0.00,0.82,1.49,2.83。
他們有相同的平均數(shù),但他們有不同的標(biāo)準(zhǔn)差,說(shuō)明數(shù)據(jù)的分散程度是不一樣的。
〖例2〗:(見(jiàn)課本P69)
分析: 比較兩個(gè)人的生產(chǎn)質(zhì)量,只要比較他們所生產(chǎn)的零件內(nèi)徑尺寸所組成的兩個(gè)總體的平均數(shù)與標(biāo)準(zhǔn)差的大小即可,根據(jù)用樣本估計(jì)總體的思想,我們可以通過(guò)抽樣分別獲得相應(yīng)的樣本數(shù)據(jù),然后比較這兩個(gè)樣本數(shù)據(jù)的平均數(shù)、標(biāo)準(zhǔn)差,以此作為兩個(gè)總體之間的差異的估計(jì)值。
【課堂精練】
P71 練習(xí) 1. 2. 3。
【課堂小結(jié)】
3.用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征分兩類:
a)用樣本平均數(shù)估計(jì)總體平均數(shù)。
b)用樣本標(biāo)準(zhǔn)差估計(jì)總體標(biāo)準(zhǔn)差。樣本容量越大,估計(jì)就越精確。
4.平均數(shù)對(duì)數(shù)據(jù)有“取齊”的作用,代表一組數(shù)據(jù)的平均水平。
5.標(biāo)準(zhǔn)差描述一組數(shù)據(jù)圍繞平均數(shù)波動(dòng)的大小,反映了一組數(shù)據(jù)變化的幅度。
【評(píng)價(jià)設(shè)計(jì)】
本文來(lái)自:逍遙右腦記憶 http://www.portlandfoamroofing.com/gaoer/76186.html
相關(guān)閱讀:
上一篇:
正弦函數(shù),余弦函數(shù)的圖象
下一篇:
遞推數(shù)列中的通項(xiàng)公式
相關(guān)主題
相關(guān)推薦
推薦閱讀
條件語(yǔ)句
j.Co M 課題:條件語(yǔ)句 一、目標(biāo): 1、知識(shí)與技能目標(biāo):通過(guò)實(shí)例掌握條件語(yǔ)句的格式及程序……
引導(dǎo)公式
泗縣三中教案、學(xué)案:引導(dǎo)公式2 年級(jí)高一學(xué)科數(shù)學(xué)題引導(dǎo)公式2 授時(shí)間撰寫(xiě)人時(shí)間 學(xué)習(xí)重點(diǎn)掌……
向量的加法運(yùn)算及其幾何意義
j.Co M 臨清三中數(shù)學(xué)組 2.2.1 向量的加法運(yùn)算及其幾何意義 目標(biāo): 1、掌握向量的加法運(yùn)算,……
雙曲線第一定義在解題中的應(yīng)用
雙曲線的第一定義是圓錐曲線部分的重要概念,在解題中有著重要的應(yīng)用,本文將雙曲線的第一……
高二數(shù)學(xué)雙曲線的標(biāo)準(zhǔn)方程學(xué)案練習(xí)題
§2.3.1 雙曲線的標(biāo)準(zhǔn)方程 一、知識(shí)要點(diǎn) 1.雙曲線的定義: ; 2.試推導(dǎo)焦點(diǎn)在 軸上的雙曲線……
相關(guān)閱讀
二次函數(shù)
高二數(shù)學(xué)數(shù)列小結(jié)
復(fù)數(shù)的幾何意義
高二數(shù)學(xué)計(jì)數(shù)原理復(fù)習(xí)學(xué)案
正切函數(shù)的定義
正切函數(shù)的誘導(dǎo)公式
簡(jiǎn)單隨機(jī)抽樣
倍角公式
常見(jiàn)的數(shù)列求和及應(yīng)用
兩角和與差的余弦
右腦記憶論壇
|
快速記憶法
|
記憶力培訓(xùn)
|
速讀培訓(xùn)
|
速讀軟件
Copyright(C) 2006-2014
逍遙右腦
All Rights Reserved