逍遙右腦記憶網(wǎng)-免費(fèi)提供各種記憶力訓(xùn)練學(xué)習(xí)方法!
超右腦
|
催眠術(shù)
|
潛能開(kāi)發(fā)
|
影像閱讀
|
右腦開(kāi)發(fā)訓(xùn)練
|
網(wǎng)站地圖
記憶方法
右腦開(kāi)發(fā)
快速閱讀
思維導(dǎo)圖
學(xué)習(xí)方法
學(xué)習(xí)計(jì)劃
作文大全
早期教育
勵(lì)志名言
右腦記憶
記憶法
|
記憶宮殿
|
記憶力訓(xùn)練
記憶術(shù)
|
最強(qiáng)大腦
|
右腦記憶法
學(xué)習(xí)方法
高中學(xué)習(xí)方法
|
高考
|
小學(xué)資源
|
單詞記憶
初中學(xué)習(xí)方法
|
中考
|
教案設(shè)計(jì)
|
試題中心
潛能成功
吸引力法則
|
成功學(xué)
|
九型人格
注意力訓(xùn)練
|
潛意識(shí)
|
思維模式
初中學(xué)習(xí)方法
初中語(yǔ)文
初中英語(yǔ)
初中數(shù)學(xué)
初中物理
初中化學(xué)
初中生物
初中政治
初中歷史
初中地理
中考學(xué)習(xí)網(wǎng)
初一學(xué)習(xí)方法
初一語(yǔ)文
初一數(shù)學(xué)
初一英語(yǔ)
初一生物
初一政治
初一歷史
初一地理
初二物理
初一學(xué)習(xí)
初中教案
初二學(xué)習(xí)方法
初二語(yǔ)文
初二數(shù)學(xué)
初二英語(yǔ)
初二生物
初二政治
初二歷史
初二地理
初三物理
初二學(xué)習(xí)
初中試題
初三學(xué)習(xí)方法
初三語(yǔ)文
初三數(shù)學(xué)
初三英語(yǔ)
初三生物
初三政治
初三歷史
初三地理
初三化學(xué)
初三學(xué)習(xí)
初中作文
逍遙右腦記憶
>
教案設(shè)計(jì)
>
數(shù)學(xué)
>
九年級(jí)
>
旋轉(zhuǎn)變換
編輯:
逍遙路
關(guān)鍵詞:
九年級(jí)
來(lái)源:
高中學(xué)習(xí)網(wǎng)
j.Co M
數(shù)學(xué):25.2《旋轉(zhuǎn)變換》教案(北京課改版九年級(jí)下)
目標(biāo):
1.使學(xué)生通過(guò)具體實(shí)例認(rèn)識(shí)旋轉(zhuǎn)變換,理解旋轉(zhuǎn)變換的概念和基本性質(zhì),并能按要求作出簡(jiǎn)單平面圖形旋轉(zhuǎn)后的圖形.
2.使學(xué)生經(jīng)歷對(duì)旋轉(zhuǎn)圖形的欣賞、分析、畫(huà)圖等過(guò)程,掌握有關(guān)畫(huà)圖的 操作技能;通過(guò)多角度地認(rèn)識(shí)旋轉(zhuǎn)圖形的形成過(guò)程,培養(yǎng)學(xué)生的發(fā)散思維 能力.
3.通過(guò)師生互動(dòng)、合作交流以及多媒體軟件的使用,使學(xué)生發(fā)現(xiàn)旋轉(zhuǎn)變換所蘊(yùn)含的美,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
教學(xué)重點(diǎn):旋轉(zhuǎn)變換的概念和基本性質(zhì),按要求作出簡(jiǎn)單平面圖形旋轉(zhuǎn)后的圖形.
教學(xué)難點(diǎn):探索旋轉(zhuǎn)變換的基本性質(zhì).
教學(xué)方法:?jiǎn)l(fā)講授,小組討論,合作探究.
教學(xué)手段:常規(guī)教學(xué)用具,計(jì)算機(jī)及課件.
教學(xué)過(guò)程:
師生活動(dòng)設(shè)計(jì)意圖
一、創(chuàng)設(shè)情境,引入新課
提問(wèn):你能舉出生活中與旋轉(zhuǎn)現(xiàn)象有關(guān)的例子嗎?
在學(xué)生回答的基礎(chǔ)上,教師用計(jì)算機(jī)演示動(dòng)畫(huà)圖片.
教師向?qū)W生說(shuō)明:在生活中,我們經(jīng)常見(jiàn)到鐘表的指針、電風(fēng)扇的扇葉、車(chē)輪等,在它們的轉(zhuǎn)動(dòng)過(guò)程中,就包含著我們今天要學(xué)習(xí)的數(shù)學(xué)知識(shí)----旋轉(zhuǎn)變換.
通過(guò)舉出與旋轉(zhuǎn)現(xiàn)象有關(guān)的生活實(shí)例,加深學(xué)生對(duì)旋轉(zhuǎn)的感性認(rèn)識(shí).
二、合作探究,學(xué)習(xí)新知
1.認(rèn)識(shí)旋轉(zhuǎn)變換
問(wèn)題1:這些旋轉(zhuǎn)現(xiàn)象有共同的特點(diǎn)嗎?
學(xué)生先獨(dú)立思考,然后與同桌進(jìn)行交流,教師適時(shí)安排課件的動(dòng)畫(huà)演示,引導(dǎo)學(xué)生觀(guān)察生活中的旋轉(zhuǎn)現(xiàn)象,抽象出數(shù)學(xué)圖形的旋轉(zhuǎn)變換的特點(diǎn).
學(xué)生回答問(wèn)題后,教師引導(dǎo)其他學(xué)生修改、補(bǔ)充,總結(jié)出這些旋轉(zhuǎn)現(xiàn)象的共同特點(diǎn)是“一個(gè)圖形沿某個(gè)方向繞定點(diǎn)轉(zhuǎn)動(dòng)”.
問(wèn)題2:你能?chē)L試敘述一下“ 旋轉(zhuǎn)變換”的概念嗎?
引導(dǎo)學(xué)生類(lèi)比“平移變換”的概念進(jìn)行思考,在學(xué)生回答的基礎(chǔ)上,修改、補(bǔ)充,達(dá)成共識(shí)后教師進(jìn)行板書(shū).
(板書(shū))在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿順時(shí)針或逆時(shí)針?lè)较蜣D(zhuǎn)動(dòng)一個(gè)角度,得到一個(gè)新的圖形,這樣的圖形運(yùn)動(dòng)稱(chēng)為旋轉(zhuǎn)變換,簡(jiǎn)稱(chēng)旋轉(zhuǎn).
問(wèn)題3:你認(rèn)為在旋轉(zhuǎn)變換的概念中,哪些是關(guān)鍵的字詞?
學(xué)生獨(dú)立思考后進(jìn)行回答,在其他學(xué)生補(bǔ)充后,教師指出:旋轉(zhuǎn)變換的概念中三個(gè)重要的關(guān)鍵詞----定點(diǎn)、方向、角度是影響旋轉(zhuǎn)的重要因素,并結(jié)合多媒體課件演示介紹
和旋轉(zhuǎn)變換有關(guān)的知識(shí):
定點(diǎn)O稱(chēng)為旋轉(zhuǎn)中心,
轉(zhuǎn)動(dòng)的角稱(chēng)為旋轉(zhuǎn)角.
如果圖形上的點(diǎn)A經(jīng)過(guò)旋轉(zhuǎn)到點(diǎn)A′,
那么這兩個(gè)點(diǎn)叫做旋轉(zhuǎn)的對(duì)應(yīng)點(diǎn).
問(wèn)題4:鐘表的指針在轉(zhuǎn)動(dòng)過(guò)程中,
其形狀、大小是否發(fā)生改變?電風(fēng)扇扇葉的轉(zhuǎn)動(dòng)呢?
學(xué)生就問(wèn)題自由發(fā)言,發(fā)表自己的看法,最后達(dá)成共識(shí).教師結(jié)合學(xué)生的發(fā)言指出:“旋轉(zhuǎn)不改變圖形的形狀和大小”是對(duì)概念的進(jìn)一步理解和認(rèn)識(shí),并進(jìn)行板書(shū).
2.探究旋轉(zhuǎn)的性質(zhì)
教師先用多媒體課件演示一個(gè)圖形的旋轉(zhuǎn)過(guò)程,
請(qǐng)學(xué)生觀(guān)察后進(jìn)行思考.
觀(guān) 察
如圖1,△ABC是等邊三角形,D是BC邊
上一點(diǎn),△ABD經(jīng)過(guò)旋轉(zhuǎn)后到達(dá)△ACE的位置. 圖1
通過(guò)解決問(wèn)題1,總結(jié)出旋轉(zhuǎn)現(xiàn)象的特點(diǎn).
通過(guò)解決問(wèn)題2,抽象出旋轉(zhuǎn)變換的概念.
通過(guò)解決問(wèn)題3,抓住旋轉(zhuǎn)變換概念中的關(guān)鍵詞,認(rèn)識(shí)旋轉(zhuǎn)變換概念的本質(zhì).
通過(guò)解決問(wèn)題4,進(jìn)一步理解和認(rèn)識(shí)了旋轉(zhuǎn)變換概念的內(nèi)涵.
思 考
(1)旋轉(zhuǎn)中心是哪一點(diǎn)?旋轉(zhuǎn)了多少度?
(2)如果M是AB的中點(diǎn),那么經(jīng)過(guò)上述旋轉(zhuǎn)后,點(diǎn)M旋轉(zhuǎn)到了什么位置?
(3)請(qǐng)寫(xiě)出圖中所有的旋轉(zhuǎn)的對(duì)應(yīng)點(diǎn).
請(qǐng)學(xué)生利用教師提供的教具----三角形紙板,在實(shí)物投影上一邊演示操作一邊回答問(wèn)題,其他同學(xué)給予補(bǔ)充.
學(xué)生明確了此圖形中的“旋轉(zhuǎn)中心、旋轉(zhuǎn)角度和旋轉(zhuǎn)的對(duì)應(yīng)點(diǎn)”后,教師安排學(xué)生進(jìn)行動(dòng)手測(cè)量.
測(cè) 量
(1)每組對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心連線(xiàn)所成的角的度數(shù).
(2)每組對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線(xiàn)段的長(zhǎng)度.
你有什么發(fā)現(xiàn)嗎?
學(xué)生拿到下發(fā)的圖形(圖1),以小組為單位進(jìn)行動(dòng)手測(cè)量,并由各小組的代表進(jìn)行匯報(bào),師生共同總結(jié)得出 :每組對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線(xiàn)所成的角都是旋轉(zhuǎn)角,每組對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.
師生達(dá)成共識(shí)后,教師繼續(xù)引導(dǎo)學(xué)生思考:是否可以將這個(gè)結(jié)論推廣到一般情況呢?學(xué)生和教師一起借助課件的演示進(jìn)行觀(guān)察、分析和驗(yàn)證.
推 廣 (幾何畫(huà)板課件的演示)
如圖,△ABC繞某一點(diǎn)O旋轉(zhuǎn)一定角度后到達(dá)△A′B′C′的位置.① 觀(guān)察圖中對(duì) 應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線(xiàn)段的長(zhǎng)度的關(guān)系,每組對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心連線(xiàn)所成的角度的關(guān)系,上述結(jié)論是否成立?② 改變點(diǎn)O的位置,再對(duì)△ABC作旋轉(zhuǎn)變換,上述結(jié)論是否仍然成立?
在學(xué)生回答問(wèn)題的基礎(chǔ)上,教師引導(dǎo)學(xué)生對(duì)以上結(jié)論進(jìn)行歸納.
歸 納 旋轉(zhuǎn)的性質(zhì):任意一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線(xiàn)所成的角都是旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.“探究旋轉(zhuǎn)的性質(zhì)”是本節(jié)課的難點(diǎn),采用“觀(guān)察?思考?測(cè)量?推廣?歸納”的模式展開(kāi)教學(xué),引導(dǎo)學(xué)生深層次的參與知識(shí)的形成過(guò)程,加深對(duì)旋轉(zhuǎn)性質(zhì)的理解.
學(xué)生通過(guò)觀(guān)察、分析和驗(yàn)證,經(jīng)歷從特殊到一般的認(rèn)識(shí)過(guò)程,在豐富的活動(dòng)中培養(yǎng)學(xué)生的思維能力.
三、應(yīng)用知識(shí),培養(yǎng)能力
[例1] 如圖2,△ACB與△ADE是兩個(gè)全等的等腰直角三角形,∠ACB和∠ADE都是直角,點(diǎn)C在A(yíng)E上,△ACB以某個(gè)點(diǎn)為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)一定角度后與△ADE重合.
(1)請(qǐng)指出其旋轉(zhuǎn)中心與旋轉(zhuǎn)角度;
(2)如果再將圖2作為“基本圖形”繞著
A點(diǎn)順時(shí)針連續(xù)旋轉(zhuǎn)組合得到圖3,那么圖3是
圖2通過(guò)幾次旋轉(zhuǎn)得到的?每次旋轉(zhuǎn)了多少度? 圖2
學(xué)生在獨(dú)立思考后發(fā)言、討論,教師再通過(guò)激勵(lì)性評(píng)價(jià)明確正誤.
最后教師用動(dòng)畫(huà)把圖3補(bǔ)充成一個(gè)漂亮的風(fēng)車(chē)(圖4),用這個(gè)實(shí)例說(shuō)明旋轉(zhuǎn)與現(xiàn)實(shí)生活聯(lián)系緊密,許多美麗的圖案可以由旋轉(zhuǎn)設(shè)計(jì)而成.
答案:(1)旋轉(zhuǎn)中心是點(diǎn)A,旋轉(zhuǎn)角度是45°;
(2)圖3是圖2繞著A點(diǎn)順時(shí)針通過(guò)3次旋轉(zhuǎn)組合得到的,旋轉(zhuǎn)角度分別為90°、180°、270°.
圖3 圖4
[例2] 請(qǐng)按照題目要求完成作圖.
(1)如圖5,畫(huà)出△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°后的圖形.
分析:假設(shè)點(diǎn)B、A的對(duì)應(yīng)點(diǎn)為B′、A′,則∠BCB′、∠ACA′都是旋轉(zhuǎn)角,且∠ACA′=∠BCB′=90°,CB′=CB,CA′=CA.
圖5 圖6
答案:見(jiàn)圖6.
(2)如圖7,△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)后,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)B′.試確定點(diǎn)A的對(duì)應(yīng)點(diǎn)的位置,并畫(huà)出旋轉(zhuǎn)后的三角形.
分析:假設(shè)點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′,則∠BCB′、∠ACA′都是旋轉(zhuǎn)角,且∠ACA′=∠BCB′=90°,CB′=CB,CA′=CA.
[
圖7 圖8
答案:見(jiàn)圖8.
(3)如右圖,△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)后,B的對(duì)應(yīng)點(diǎn)為點(diǎn)B′.
試確定點(diǎn)A的對(duì)應(yīng)點(diǎn)的位置,并畫(huà)出旋轉(zhuǎn)后的三角形.
分析:假設(shè)點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′,則∠BCB′、∠ACA′都是旋轉(zhuǎn)角,且∠ACA′=∠BCB′,CB′=CB,CA′=CA.
解:① 聯(lián)結(jié)CB′;
② 以AC為一邊作∠ACF,使∠ACF =∠BCB′;
③ 在射線(xiàn)CF上截取CA′= CA;
④ 聯(lián)結(jié)B′A′.
右下圖中的△A′B′C就是△ABC繞點(diǎn)C按
順時(shí)針旋轉(zhuǎn)后的圖形.
要求學(xué)生先獨(dú)立畫(huà)出圖形再進(jìn)行小組
交流,并請(qǐng)學(xué)生利用實(shí)物投影敘述作圖過(guò)程.
然后請(qǐng)學(xué)生結(jié)合例2進(jìn)行小結(jié):如何按 要求作
出簡(jiǎn)單平面圖形旋轉(zhuǎn)后的圖形?在學(xué)生交流的基礎(chǔ)
上,教師進(jìn)行評(píng)價(jià),師生達(dá)成共識(shí):按題目要求找
到旋轉(zhuǎn)中心、旋轉(zhuǎn)方向、旋轉(zhuǎn)角度和對(duì)應(yīng)點(diǎn)是作圖
的關(guān)鍵.
[拓展練習(xí)] 如圖9,點(diǎn)O是六個(gè)正三角形
的公共頂點(diǎn),這個(gè)圖案可以看作是哪個(gè)“基本
圖形”以點(diǎn)O為旋轉(zhuǎn)中心經(jīng)過(guò)怎樣旋轉(zhuǎn)組合得
到的?
請(qǐng)同學(xué)們以小組為單位進(jìn)行探究,看哪個(gè)
小組得到的方案最多?
圖9
在小組討論的基礎(chǔ)上,請(qǐng)學(xué)生展示各種方案:
(1)圖10和圖11是分別以“等邊三角形”、“折線(xiàn)”為基本圖形,以點(diǎn)O為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)5次組合得到的,旋轉(zhuǎn)角度分別為
60°、120°、180°、240°、300°.
圖 10 圖 11
(2)圖12和圖13是分別以“一個(gè)內(nèi)角為60°的菱形”、“一個(gè)底角為60°的等腰梯形”為基本圖形,以點(diǎn)O為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)4次組合得到的,旋轉(zhuǎn)角度分別為60°、120°、180°、240°.
圖 12 圖 13
(3)其它答案:
通過(guò)例1的講解,使學(xué)生鞏固旋轉(zhuǎn)的概念,并體會(huì)旋轉(zhuǎn)與現(xiàn)實(shí)生活的緊密聯(lián)系.
通過(guò)例2的教學(xué),使學(xué)生在動(dòng)手畫(huà)圖的過(guò)程中,理解旋轉(zhuǎn)的性質(zhì),掌握有關(guān)畫(huà)圖的操作步驟,認(rèn)識(shí)旋轉(zhuǎn)圖形的形成過(guò)程.
第(1)小題的設(shè)計(jì)目的是使學(xué)生會(huì)按題目給出的旋轉(zhuǎn)方向、旋轉(zhuǎn)角度畫(huà)出旋轉(zhuǎn)后的三角形.
第(2)小題是在第(1)小題的基礎(chǔ)上,使學(xué)生能根據(jù)題目給出的一組對(duì)應(yīng)點(diǎn)找到旋轉(zhuǎn)中心、旋轉(zhuǎn)方向和旋轉(zhuǎn)角度,并畫(huà)出旋轉(zhuǎn)后的三角形.
第(3)小題是在第(2)題的基礎(chǔ)上,當(dāng)旋轉(zhuǎn)角不再是特殊角、同時(shí)沒(méi)有網(wǎng)格背景時(shí),使學(xué)生能根據(jù)題目給出的一組對(duì)應(yīng)點(diǎn)找到旋轉(zhuǎn)中心、旋轉(zhuǎn)方向和旋轉(zhuǎn)角度,并畫(huà)出旋轉(zhuǎn)后的三角形.
“拓展練習(xí)”是一道開(kāi)放性練習(xí),通過(guò)這道題的分析和講解,讓學(xué)生多角度地認(rèn)識(shí)旋轉(zhuǎn)圖形的形成過(guò)程,同時(shí)培養(yǎng)學(xué)生的觀(guān)察能力和動(dòng)手操作能力.
四 、課堂小結(jié),回顧知識(shí)
1.學(xué)生自己總結(jié),并在班上交流
本節(jié)課??
我學(xué)會(huì)了……
使我感觸最深的……
我感到最困難的是……
2.結(jié)合學(xué)生所述,教師給予指導(dǎo):
① 正確理解旋轉(zhuǎn)變換的概念及其基本性質(zhì),并能按要求作出簡(jiǎn)單平面 圖形旋轉(zhuǎn)后的圖形.
② 生活中處處有數(shù)學(xué)的影 子,只要留心觀(guān)察身邊的事物,開(kāi)動(dòng)腦筋,就能用數(shù)學(xué)知識(shí)解決許多生活中的實(shí)際問(wèn)題.知識(shí)的小結(jié)以教師提問(wèn)、學(xué)生自由討論的形式進(jìn)行.
五、布置作業(yè),鞏固知識(shí)
1.基礎(chǔ)題:課后習(xí)題第48頁(yè)第1、2、3題.
2.實(shí)踐題: 小小設(shè)計(jì)師
如下圖是某設(shè)計(jì)師設(shè)計(jì)的方桌布圖案的一部分,請(qǐng)你運(yùn)用旋轉(zhuǎn)變換的方法,在坐標(biāo)紙上將該圖形繞原點(diǎn)順時(shí)針依次旋轉(zhuǎn)90°、180°、270°,并畫(huà)出它在各象限內(nèi)的圖形,你會(huì)得到一個(gè)美麗的“立體圖形”!但是涂陰影時(shí)要注意利用旋轉(zhuǎn)變換的特點(diǎn),不要涂錯(cuò)了位置,否則不會(huì)出現(xiàn)理想的效果,你來(lái)試一試吧!
第1題是基礎(chǔ)題,加深知識(shí)的鞏固;第2題是實(shí)踐題,供學(xué)有余力的學(xué)生完成,讓學(xué)生在坐標(biāo)系中嘗試畫(huà)出旋轉(zhuǎn)后的圖形,感受圖形上點(diǎn)的坐標(biāo)與圖形旋轉(zhuǎn)之間的關(guān)系,發(fā)展學(xué)生的形象思維能力和數(shù)形結(jié)合意識(shí),為以后的教學(xué)埋下伏筆.
教案設(shè)計(jì)說(shuō)明
(一)關(guān)于教學(xué)內(nèi)容
本節(jié)課是在平移變換的基礎(chǔ)上學(xué)習(xí)旋轉(zhuǎn)變換,它是數(shù)學(xué)課程標(biāo)準(zhǔn)中《空間和圖形》的一個(gè)新內(nèi)容.這節(jié)課充分體現(xiàn)了新課程所倡導(dǎo)的“從生活走進(jìn)課程,從課程走進(jìn)社會(huì)”的理念.在學(xué)習(xí)旋轉(zhuǎn)變換的概念和探索它的基本性質(zhì)的過(guò)程中,不僅可以使學(xué)生感受到旋轉(zhuǎn)變換與實(shí)際生活的密切相關(guān),而且使學(xué)生掌握有關(guān)畫(huà)圖的操作技能,增強(qiáng)對(duì)圖形欣賞的意識(shí),形成初步的審美能力.
(二)關(guān)于教學(xué)方法
為了充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,使學(xué)生主動(dòng)愉快地學(xué)習(xí),采用啟發(fā)講授、小組討論、合作探究相結(jié)合的教學(xué)方式.在課堂教學(xué)過(guò)程中努力貫徹“教師為主導(dǎo)、學(xué)生為主體、探究為主線(xiàn)、思維為核心”的教學(xué)思想,通過(guò)引導(dǎo)學(xué)生觀(guān)察、分析和動(dòng)手操作,使學(xué)生充分地動(dòng)手、動(dòng)口、動(dòng)腦,參與教學(xué)全過(guò)程.
(三)關(guān)于教學(xué)手段
在教學(xué) 手段方面,選擇多媒體課件輔助教學(xué)的方式,直觀(guān)、形象地再現(xiàn)圖形的旋轉(zhuǎn)過(guò)程.生動(dòng)、有趣的多媒體課件一方面為學(xué)生在課堂教學(xué)中進(jìn)行自主探究和發(fā)現(xiàn)新知提供了技術(shù)支持,另一方面為教師進(jìn)行教學(xué)演示提供了平臺(tái),二者有機(jī)結(jié)合,協(xié)調(diào)發(fā)揮作用,使信息技術(shù)與教學(xué)內(nèi)容有機(jī)整合,真正為教學(xué)服務(wù).
(四)關(guān)于教學(xué)過(guò)程
為了達(dá)到教學(xué)目標(biāo),強(qiáng)化重點(diǎn)內(nèi)容并突破教學(xué)中的難點(diǎn),在課堂教學(xué)過(guò)程中,根據(jù)教學(xué)目標(biāo)和學(xué)生的具體情況,緊密聯(lián)系生活實(shí)際中的旋轉(zhuǎn)實(shí)例,精心設(shè)計(jì)問(wèn)題情境,使所有學(xué)生既能參與,又有 一定的拓展、探索的余地,全體學(xué)生在獲得必要發(fā)展的前提下,不同的學(xué)生獲得不同的體驗(yàn).
(五)關(guān)于學(xué)法指導(dǎo)
圍繞本節(jié)課所學(xué)知識(shí),設(shè)置有現(xiàn)實(shí)意義的、具有挑戰(zhàn)性的開(kāi)放型問(wèn)題,激發(fā)學(xué)生積極思考,引導(dǎo)學(xué)生自主探索與合作交流,既能在探索中獲取知識(shí),又能不斷豐富數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),學(xué)會(huì)探索,提高解決問(wèn)題的能力,培養(yǎng)一定的創(chuàng)新意識(shí)和實(shí)踐能力.通過(guò)課堂小結(jié),增強(qiáng)學(xué)生學(xué)習(xí)過(guò)程中的反思意識(shí),培養(yǎng)他們良好的學(xué)習(xí)習(xí)慣.
本文來(lái)自:逍遙右腦記憶 http://www.portlandfoamroofing.com/chusan/66766.html
相關(guān)閱讀:
軸對(duì)稱(chēng)變換
上一篇:
二次根式學(xué)案
下一篇:
剎車(chē)距離與二次函數(shù)
相關(guān)主題
軸對(duì)稱(chēng)變換
九年級(jí)數(shù)學(xué)競(jìng)賽拋物線(xiàn)講座
平移變換
中考數(shù)學(xué)分類(lèi)討論專(zhuān)題復(fù)習(xí)教案
旋轉(zhuǎn)導(dǎo)學(xué)案
旋轉(zhuǎn)
抽樣調(diào)查
應(yīng)用舉例
平行四邊形的判定
九年級(jí)數(shù)學(xué)競(jìng)賽走進(jìn)追問(wèn)求根公式講座
相關(guān)推薦
推薦閱讀
2012年中考數(shù)學(xué)一輪復(fù)習(xí)有理數(shù)精品講義
2012年中考數(shù)學(xué)一輪復(fù)習(xí)精品講義 第一章 有理數(shù) 本章小結(jié) 小結(jié)1 本章概述 本章的知識(shí)要點(diǎn)主……
用樣本估計(jì)總體
4.2用樣本估計(jì)總體 【教學(xué)目標(biāo)】: 通過(guò)實(shí)例,使學(xué)生用樣本估計(jì)總體的思想,能夠根據(jù)統(tǒng)計(jì)結(jié)……
平行四邊形的判定
j.Co M §1.3 (5)平行四邊形的判定案 一 預(yù)習(xí)導(dǎo)學(xué) 1.∵AB∥CD ,AD∥BC ∴四邊形ABC D是……
圓的切線(xiàn)
M 內(nèi)容24.2圓的切線(xiàn)(1) 課型新授課課時(shí)32執(zhí)教 目標(biāo)使學(xué)生掌握切線(xiàn)的識(shí)別方法,并能初步運(yùn)……
折紙與證明
第一數(shù)學(xué)活動(dòng):折紙與證明 一、學(xué)習(xí)目標(biāo): 1.充分給學(xué)生思考、探索折疊等邊三角形、特殊四……
相關(guān)閱讀
中考數(shù)學(xué)實(shí)數(shù)總復(fù)習(xí)
建立二次函數(shù)模型2 教案
中考數(shù)學(xué)分類(lèi)討論專(zhuān)題復(fù)習(xí)教案
相似三角形導(dǎo)學(xué)案
初三數(shù)學(xué)上冊(cè)第三章二次根式教學(xué)案
由樣本推斷總體教案
圓復(fù)習(xí)導(dǎo)學(xué)案
平行線(xiàn)分三角形兩邊成比例2
一元二次方程導(dǎo)學(xué)案
等腰三角形的性質(zhì)和判定
右腦記憶論壇
|
快速記憶法
|
記憶力培訓(xùn)
|
速讀培訓(xùn)
|
速讀軟件
|
Copyright(C) 2006-2014
逍遙右腦
All Rights Reserved