2013年高考數(shù)學(xué)總復(fù)習(xí) 6-3 等比數(shù)列但因?yàn)闇y(cè)試 新人教B版
1.(2011•北京朝陽(yáng)一模)已知{an}是由正數(shù)組成的等比數(shù)列,Sn表示{an}的前n項(xiàng)的和,若a1=3,a2a4=144,則S5的值是( )A .692 B.69 C.93 D.189[答案] C[解析] 由a2a4=a23=144得a3=12(a3=-12舍去),又a1=3,各項(xiàng)均為正數(shù),則q=2.所以S5=a11-q51-q=3×1-321-2=93.2.(2011•濰坊一中期末、湖南湘西聯(lián)考)各項(xiàng)都是正數(shù)的等比數(shù)列{an}的公比q≠1,且a2,12a3,a1成等差數(shù)列,則a3+a4a4+a5的值為( )A.1-52 B.5+12C.5-12 D.5+12或5-12[答案] B[解析] ∵a2,12a3,a1成等差數(shù)列,∴a3=a2+a1,∵{an}是公比為q的等比數(shù)列,∴a1q2=a1q+a1, ∴q2-q-1=0,∵q>0,∴q=5-12.∴a3+a4a4+a5=1q=5+12.3.()(2011•青島一模)在等比數(shù)列{an}中,若a2=9,a5=243,則數(shù)列{an}的前4項(xiàng)和為( )A.81 B.120 C.168 D.192[答案] B[解析] 設(shè)等比數(shù)列{an}的公比為q,根據(jù)題意及等比數(shù)列的性質(zhì)可知:a5a2=27=q3,所以q=3,所以a1=a2q=3,所以S4=31-341-3=120.(理)(2011•吉林長(zhǎng)春模擬)已知{an}是首項(xiàng)為1的等比數(shù)列,Sn是{an}的前n項(xiàng)和,且9S3=S6,則數(shù)列{1an}的前5項(xiàng)和為( )A.8532 B.3116 C.158 D.852[答案] B[解析] ∵9S3=S6,∴8(a1+a2+a3)=a4+a5+a6,∴8=q3,∴q=2,∴an=2n-1,∴1an=(12)n-1,∴{1an}的前5項(xiàng)和為1-1251-12=3116,故選B.4.(2011•江西撫州市高三模擬)等比數(shù)列{an}的前n項(xiàng)和為Sn,若S1、S3、S2成等差數(shù)列,則{an}的公比等于( )A.1 B.12 C.-12 D.1+52[答案] C[解析] 2S3=S1+S2,即2(a1+a1q+a1q2)=a1+a1+a1q,得q=-12,故選C. 5.()(2011•哈爾濱九中模擬)已知數(shù)列{an}的前n項(xiàng)和Sn=2n-1,則數(shù)列{an}的奇數(shù)項(xiàng)的前n項(xiàng)和為( )A.2n+1-13 B.2n+1-23 C.22n-13 D.22n-23[答案] C[解析] 當(dāng)n=1時(shí),a1=S1=1,當(dāng)n≥2時(shí),an=Sn-Sn-1=2n-2n-1=2n-1.∴an=2n-1(n∈N*),則數(shù)列{an}的奇數(shù)項(xiàng)的前n項(xiàng)和為1-22n1-22=22n-13,故選C.(理)(2011•泉州市質(zhì)檢)等比數(shù)列{an}的前n項(xiàng)和為Sn,若a1+a2+a3+a4=1,a5+a6+a7+a8=2,Sn=15,則項(xiàng)數(shù)n為( )A.12 B.14 C.15 D.16[答案] D[解析] a5+a6+a7+a8a1+a2+a3+a4=q4=2,由a1+a2+a3+a4=1.得a1(1+q+q2+q3)=1,即a1•1-q41-q=1,∴a1=q-1,又Sn=15,即a11-qn1-q=15,∴qn=16,又∵q4=2,∴n=16.故選D.6.(2011•安徽皖南八校聯(lián)考)設(shè){an}是公比為q的等比數(shù)列,令bn=an+1(n=1,2,…),若數(shù)列{bn}有連續(xù)四項(xiàng)在集合{-53,-23,19,37,82}中,則q等于( )A.-43 B.-32C.-23或- 32 D.-34或-43[答案] C[解析] 集合{-53,-23,19,37,82}中的各元素減去1得到集合{-54,-24,18,36,81},其中-24,36,-54,81或81,-54,36,-24成等比數(shù)列,∴q=-32或-23.7.已知f(x)是一次函數(shù),若f(3)=5,且f(1)、f(2)、f(5)成等比數(shù)列,則f(1)+f(2)+…+f(100)的值是________.[答案] 10000[解析] 設(shè)f(x)=kx+b,f(3)=3k+b=5,由f(1)、f(2)、f(5)成等比數(shù)列得(2k+b)2=(k+b)•(5k+b),可得k=2,b=-1.∴f (n)=2n-1,則f(1)+f(2)+…+f(100)=100×1+100×992×2=10000.8.()(2010•安徽皖西四校聯(lián)考)在公差不為零的等差數(shù)列{an}中,a1、a3、a7依次成等比數(shù)列,前7項(xiàng)和為35,則數(shù)列{an}的通項(xiàng)an=________.[答案] n+1[解析] 設(shè)等差數(shù)列首項(xiàng)a1,公差d,則∵a1、a3、a7成等比,∴a23=a1a7,∴(a1+2d)2=a1(a1+6d),∴a1=2d,又S7=7a1+7×62d=35d=35,∴d=1,∴a1=2,∴an=n+1.(理)(2010•浙江金華)如果一個(gè)n位的非零整數(shù)a1a2…an的各個(gè)數(shù)位上的數(shù)字a1,a2,…,an或適當(dāng)調(diào)整次序后能組成一個(gè)等比數(shù)列,則稱(chēng)這個(gè)非零整數(shù)a1a2…an為n位“等比數(shù)”.如124,913,333等都是三位“等比數(shù)”.那么三位“等比數(shù)”共有________個(gè).(用數(shù)字作答)[答案] 27[解析] 適當(dāng)調(diào)整次序后能組成一個(gè)三位“等比數(shù)”的非零整數(shù)可分為以下幾類(lèi):(1)111,222,…,999;(2)124,248,139.其中第(1)類(lèi)“等比數(shù)”有9個(gè);第(2)類(lèi)“等比數(shù)”有3×6=18個(gè);因此,滿(mǎn)足條件的三位“等比數(shù)”共有27個(gè).9.(2011•錦州模擬)在等比數(shù)列{an}中,若公比q>1,且a2a8=6,a4+a6=5,則a5a7=________.[答案] 23[解析] ∵a2a8=6,∴a4a6=6,又∵a4+a6=5,且q>1,∴a4=2,a6=3,∴a5a7=a4a6=23.10.()(2011•大綱全國(guó),17)設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,已知a2=6,6a1+a3=30,求an和Sn.[解析] 設(shè){an}的公比為q,由已知有:a1q=66a1+a1q2=30.解得a1=3q=2或a1=2q=3(1)當(dāng)a1=3,q=2時(shí),an=a1•qn-1=3×2n-1Sn=a11-qn1-q=3×1-2n1-2=3×(2n-1)(2)當(dāng)a1=2,q=3時(shí),an=a1•qn-1=2×3n-1Sn=a11-qn1-q=2×1-3n1-3=3n-1.綜上,an=3×2n-1,Sn=3×(2n-1)或an=2×3n-1,Sn=3n-1.(理)(2011•東臨沂一模)已知{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,且a1+a2=2(1a1+1a2),a3+a4=32(1a3+1a4).(1)求{an}的通項(xiàng)公式;(2)設(shè)bn=a2n+log2an,求數(shù)列{bn}的前n項(xiàng)和Tn.[解析] (1)設(shè)等比數(shù)列{an}的公比為q,則an=a1qn-1,由已知得a1+a1q=2(1a1+1a1q),a1q2+a1q3=32(1a1q2+1a1q3).化簡(jiǎn)得a21qq+1=2q+1,a21q5q+1=32q+1,即a21q=2,a21q5=32.又∵a1>0,q>0,解得a1=1,q=2.∴an=2n-1.(2)由(1)知bn=a2n+log2an=4n-1+(n-1),∴Tn=(1+4+42+…+4n-1)+(1+2+3+…+n-1)=4n-14-1+nn-12=4n-13+nn-12.11.()(2011•遼寧六校?)設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若8a2+a5=0,則下列式子中數(shù)值不能確定的是( )A.a5a3 B.S5S3C.an+1an D.Sn+1Sn[答案] D[解析] 數(shù)列{an}為等比數(shù)列,由8a2+a5=0,知8a2+a2q3=0,因?yàn)閍2≠0,所以q=-2,a5a3=q2=4;S5S3=1-q51-q3=113;an+1an=q=-2;Sn+1Sn=1-qn+11-qn,其值與n有關(guān),故選D.(理)(2011•浙江溫州質(zhì)檢)一個(gè)直角三角形的三內(nèi)角的正弦成等比數(shù)列,其最小角的正弦值為( )A.5-12 B.12C.5-14 D.5+14[答案] A[解析] 設(shè)三內(nèi)角A<B<C,∵sinA、sinB、sinC成等比數(shù)列,∴a、b、c成等比數(shù)列,∴b2=ac,∴c2-a2=ac,∴ac2+ac -1=0.∵ac>0,∴ac=5-12=sinA,故選A.[點(diǎn)評(píng)] 在△ABC中,由正弦定理a=2RsinA、b=2RsinB可知,a<b⇔A<B⇔sinA<sinB.12.()(2011•遼寧沈陽(yáng)二中檢測(cè),遼寧丹東四校聯(lián)考)已知數(shù)列{an}滿(mǎn)足log3an+1=log3an+1(n∈N*)且a2+a4+a6=9,則log13 (a5+a7+a9)的值是( )A.-5 B.-15 C.5 D.15[答案] A[分析] 根據(jù)數(shù)列滿(mǎn)足log3an+1=log3an+1(n∈N*).由對(duì)數(shù)的運(yùn)算法則,得出an+1與an的關(guān)系,判斷數(shù)列的類(lèi)型,再結(jié)合a2+a4+a6=9得出a5+a7+a9的值.[解析] 由log3an+1=log3an+1(n∈N*)得,an+1=3an,∵an>0,∴數(shù)列{an}是公比等于3的等比數(shù)列,∴a5+a7+a9=(a2+a4+a6)×33=35,∴l(xiāng)og13 (a5+a7+a9)=-log335=-5.(理)已知等比數(shù)列{an}的公比q>0,其前n項(xiàng)的和為Sn,則S4a5與S5a4的大小關(guān)系是( )A.S4a5<S 5a4 B.S4a5>S5a4C.S4a5=S5a4 D.不確定[答案] A[解析] (1)當(dāng)q=1時(shí),S4a5-S5a4=4a21-5a21=-a21<0.(2)當(dāng)q≠1且q>0時(shí),S4a5-S5a4=a211-q(q4-q8-q3+q8)=a21q31-q(q-1)=-a21q3<0.[點(diǎn)評(píng)] 作差,依據(jù)前n項(xiàng)和與通項(xiàng)公式化簡(jiǎn)后判斷符號(hào)是解決這類(lèi)問(wèn)題的基本方法,應(yīng)注意對(duì)公比分類(lèi)討論,請(qǐng)?jiān)僮鱿骂}:已知等比數(shù)列{an}中,a1>0,q>0,前n項(xiàng)和為Sn,試比較S3a3與S5a5的大。[解析] 當(dāng)q=1時(shí),S3a3=3,S5a5=5,所以S3a3 <S5a5;當(dāng)q>0且q≠1時(shí),S3a3-S5a5=a11-q3a1q21-q-a11-q5a1q41-q=q21-q3-1-q5q41-q=-q-1q4<0,所以有S3a3<S5a5.綜上可知有S3a3<S5a5.13.()(2011•長(zhǎng)春模擬)已知正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn,bn=a3na2n+1,且{bn}的前n項(xiàng)和為T(mén)n,若對(duì)一切正整數(shù)n都有Sn>Tn,則數(shù)列{an}的公比q的取值范圍是( )A.0<q<1 B.q>1C.q>2 D.1<q<2[答案] B[解析] 由于{an}是等比數(shù)列,公比為q,所以bn=a3na2n+1=1q2an,于是b1+b2+…+bn=1q2(a1+a2+…+an),即Tn=1q2•Sn.又Sn>Tn,且Tn>0,所以q2=SnTn>1.因?yàn)閍n>0對(duì)任意n∈N*都成立,所以q>0,因此公比q的取值范圍是q>1.(理)(2011•榆林模擬)在等比數(shù)列{an}中,an>0(n∈N+),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,又a3與a5的等比中項(xiàng)為2,bn=log2an,數(shù)列{bn }的前n項(xiàng)和為Sn,則當(dāng)S11+S22+…+Snn最大時(shí),n的值等于( )A.8 B.9 C.8或9 D.17[答案] C[解析] ∵a1a5+2a3a5+a2a8=25,∴a23+2a3a5+a25=25,又an>0,∴a3+a5=5,又q∈(0,1),∴a3>a5,∵a3a5=4,∴a3=4,a5=1,∴q=12,a1=16,an=16×(12)n-1=25-n,bn=log2an=5-n,bn+1-bn= -1,∴{bn}是以b1=4為首項(xiàng),-1為公差的等差數(shù)列,∴Sn=n9-n2,∴Snn=9-n2,∴當(dāng)n≤8時(shí),Snn>0;當(dāng)n=9時(shí),Snn=0;當(dāng)n>9時(shí),Snn<0,∴當(dāng)n=8或9時(shí),S11+S22+…+Snn最大.14.(2011•新標(biāo)全國(guó),17)已知等比數(shù)列{an}中,a1=13,公比q=13.(1)Sn為{an}的前n項(xiàng)和,證明:Sn=1-an2;(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列{bn}的通項(xiàng)公式.[解析] (1)因?yàn)閍n=13×13n-1=13n,Sn=131-13n1-13=1-13n2,所以Sn=1-an2.(2)bn=log3a1+log3a2+…+log3an=-(1+2+…+n)=-nn+12.所以{bn}的通項(xiàng)公式為bn=-nn+12.15.()(2011•東淄博一模)設(shè){an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和.已知S3=7,且a1+3,3a2,a3+4構(gòu)成等差數(shù)列.(1)求數(shù)列{an}的通項(xiàng)公式;(2)令bn=lna3n+1,n=1,2,…,求數(shù)列{bn}的前n項(xiàng)和Tn.[解析] (1)設(shè)數(shù)列{an}的公比為q(q>1),由已知,得a1+a2+a3=7,a1+3+a3+42=3a2,即a1+a2+a3=7,a1-6a2+a3=-7,a11+q+q2=7,a11-6q+q2=-7,解得a1=1,q=2.故 數(shù)列{an}的通項(xiàng)為an= 2n-1(2)由(1)得a3n+1=23n,∴bn=lna3n+1=ln23n=3nln2,又bn+1-bn=3ln2,∴{bn}是以b1=3ln2為首項(xiàng),以3ln2為公差的等差數(shù)列.∴Tn=b1+b2+…+bn=nb1+bn2=n3ln2+3nln22=3nn+1ln22即Tn=3nn+12ln2.(理)(2011•安 慶模擬)已知數(shù)列{an}中,a1=12,點(diǎn)(n,2an+1-an)在直線y=x上,其中n=1,2,3….(1)令bn=an+1-an-1,求證數(shù)列{bn}是等比數(shù)列;(2)求數(shù)列{an}的通項(xiàng).[解析] (1)由已知得2an+1=an+n,又a1=12, ∴a2=34,b1=a2-a1-1=34-12-1=-34,又∵bn=an+1-an-1,∴bn+1=an+2-an+1-1,∴bn+1bn=an+2-an+1-1an+1-an-1=an+1+n+12-an+n2-1an+1-an-1=an+1-an-12an+1-an-1=12.∴{bn}是以-34為首項(xiàng),以12為公比的等比數(shù)列.(2)由(1)知,bn=-34×(12)n-1=-3×(12)n+1∴an+1-an=1-3×(12)n+1,∴a2-a1=1-3×(12)2a3-a2=1-3×(12)3…… an-an-1=1-3×(12)n各式相加得an=n-1-3×[(12)2+(12)3+…+(12)n]+12=n-12-3×14×[1-12n-1]1-12=32n+n-2.1.(2010•常德市檢測(cè))已知數(shù)列{an}的前n項(xiàng)的和Sn滿(mǎn)足Sn=2n-1(n∈N*),則數(shù)列{a2n}的前n項(xiàng)的和為( )A.4n-1 B.13(4n-1)C.43(4n-1) D.(2n-1)2[答案] B[解析] n≥2時(shí),an=Sn-Sn-1=(2n-1)-(2n-1-1)=2n-1,又a1=S1=21-1=1也滿(mǎn)足,∴an=2n-1(n∈N*).設(shè)bn=a2n,則bn=(2n-1)2=4n-1,∴數(shù)列{bn}是首項(xiàng)b1=1,公比為4的等比數(shù)列,故{bn}的前n項(xiàng)和Tn=1×4n-14-1=13(4n-1).2.(2010•寧波市模擬)等比數(shù)列的首項(xiàng)為1,項(xiàng)數(shù)是偶數(shù),所有的奇數(shù)項(xiàng)之和為85,所有的偶數(shù)項(xiàng)之和為170,則這個(gè)等比數(shù)列的項(xiàng)數(shù)為( )A.4 B.6 C.8 D. 10[答案] C[解析] 由題意知,85q=170,∴q=2,∴85+170=1×2n-12-1,∴n=8.3.(2011•東濟(jì)南模擬)已知各項(xiàng)不為0的等差數(shù)列{an},滿(mǎn)足2a3-a27+2a11=0,數(shù)列{bn}是等比數(shù)列,且b7=a7,則b6b8等于( )A.2 B.4 C.8 D.16[答案] D[解析] 由題意可知,a27=2(a3+a11)=4a7.∵a7≠0,∴a7=4,∴b6b8=b27=a27=16.4.已知a、b、c成等比數(shù)列,如果a、x、b和b、y、c都成等差數(shù)列,則ax+cy=________.[答案] 2[解析] 由條件知x=a+b2,y=b+c2,c=bq,a=bq,∴ax+cy=2aa+b+2cb+c=2bqbq+b+2bqb+bq=21+q+2q1+q=2.5.已知{an}是首項(xiàng)為a1、公比q(q≠1)為正數(shù)的等比數(shù)列,其前n項(xiàng)和為Sn,且有5S2=4 S4,設(shè)bn=q+Sn.(1)求q的值;(2)數(shù)列{bn}能否是等比數(shù)列?若是,求出a1的值;若不是,請(qǐng)說(shuō)明理由.[解析] (1)由題意知5S2=4S4,S2=a11-q21-q,S4=a11-q41-q,∴5(1-q2)=4(1-q4),又q>0,∴q=12.(2)∵Sn=a11-qn1-q=2a1-a112n-1,于是bn=q+Sn=12+2a1-a112n-1,若{bn}是等比數(shù)列,則12+2a1=0,∴a1=-14.此時(shí),bn=12n+1.∵bn+1bn=12n+212n+1=12,∴數(shù)列{bn}是等比數(shù)列.所以存在實(shí)數(shù)a1=-14,使數(shù)列{bn}為等比數(shù)列. 6.(2010•福建龍巖一模)已知數(shù)列{an}和{bn},數(shù)列{an}的 前n項(xiàng)和記為Sn.若點(diǎn)(n,Sn)在函數(shù)y=-x2+4x的圖象上,點(diǎn)(n,bn)在函數(shù)y=2x的圖象上.(1)求數(shù)列{an}的通項(xiàng)公式;(2)求數(shù)列{anbn}的前n項(xiàng)和Tn.[解析] (1)由已知得Sn=-n2+4n,當(dāng)n≥2時(shí),an=Sn-Sn-1=-2n+5,又當(dāng)n=1時(shí),a1=S1=3,符合上式.∴an=-2n+5.(2)由已知得bn=2n,anbn=(-2n+5)2n.Tn=3×21+1×22+(-1)×23+…+(-2n+5)×2n,2Tn=3×22+1×23+…+(-2n+7)×2n+(-2n+5)×2n+1,兩式相減可得Tn=-6+(23+24+…+2n+1)+( -2n+5)×2n+1=231-2n-11-2+(-2n+5)×2n+1-6=(7-2n)×2n+1-14.
右腦記憶論壇 | 快速記憶法 | 記憶力培訓(xùn) | 速讀培訓(xùn) | 速讀軟件
Copyright(C) 2006-2014 逍遙右腦 All Rights Reserved