逍遙右腦記憶網(wǎng)-免費(fèi)提供各種記憶力訓(xùn)練學(xué)習(xí)方法!
超右腦
|
催眠術(shù)
|
潛能開發(fā)
|
影像閱讀
|
右腦開發(fā)訓(xùn)練
|
網(wǎng)站地圖
記憶方法
右腦開發(fā)
快速閱讀
思維導(dǎo)圖
學(xué)習(xí)方法
學(xué)習(xí)計(jì)劃
作文大全
早期教育
勵(lì)志名言
右腦記憶
記憶法
|
記憶宮殿
|
記憶力訓(xùn)練
記憶術(shù)
|
最強(qiáng)大腦
|
右腦記憶法
學(xué)習(xí)方法
高中學(xué)習(xí)方法
|
高考
|
小學(xué)資源
|
單詞記憶
初中學(xué)習(xí)方法
|
中考
|
教案設(shè)計(jì)
|
試題中心
潛能成功
吸引力法則
|
成功學(xué)
|
九型人格
注意力訓(xùn)練
|
潛意識(shí)
|
思維模式
高中學(xué)習(xí)方法
高中語文
高中英語
高中數(shù)學(xué)
高中物理
高中化學(xué)
高中生物
高中政治
高中歷史
高中地理
高中教案
高中試題
高一學(xué)習(xí)方法
高一語文
高一數(shù)學(xué)
高一英語
高一物理
高一化學(xué)
高一生物
高一政治
高一歷史
高一地理
高一學(xué)習(xí)
高二學(xué)習(xí)方法
高二語文
高二數(shù)學(xué)
高二英語
高二物理
高二化學(xué)
高二生物
高二政治
高二歷史
高二地理
高二學(xué)習(xí)
高三學(xué)習(xí)方法
高三語文
高三數(shù)學(xué)
高三英語
高三物理
高三化學(xué)
高三生物
高三政治
高三歷史
高三地理
高三學(xué)習(xí)
逍遙右腦記憶
>
試題中心
>
數(shù)學(xué)
>
高三
>
2013年山東高考數(shù)學(xué)文科押題卷B版(附答案)
編輯:
逍遙路
關(guān)鍵詞:
高三
來源:
高中學(xué)習(xí)網(wǎng)
數(shù)學(xué)(文)試 題(2013.05.25)
注意事項(xiàng):
1.本試題滿分150分,考試時(shí)間為120分鐘.
2.使用答題紙時(shí),必須使用0.5毫米的黑色墨水簽字筆書寫,作圖時(shí),可用2B鉛筆.要字跡工整,筆跡清晰.超出答題區(qū)書寫的答案無效;在草稿紙,試題卷上答題無效.
3.答卷前將密封線內(nèi)的項(xiàng)目填寫清楚.
一、選擇題:本大題共12小題;每小題5分,共60分.在每小題給出的個(gè)選項(xiàng)中,只有一個(gè)選項(xiàng)符合題目要求,把正確選項(xiàng)的代號(hào)涂在答題卡上.
1.已知復(fù)數(shù) 是虛數(shù)單位,則復(fù)數(shù) 的虛部是
A. B. C. D.
2.設(shè)集合 , , ,則圖中陰影部分表示的集合為 ( )
A. B. C. D.
3 .已知 為實(shí)數(shù),則 是 的
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要
4.已知實(shí)數(shù)x,y滿足條件 的最大值為
A. B. C. D.
5.若一個(gè)底面是正三角形的三棱錐的俯視圖如圖所示,則其主視圖與側(cè)視圖面積之比等于
A. B. C. D.
6.已知雙曲線 的一個(gè)焦點(diǎn)與拋物線 的焦點(diǎn)重合,且雙曲線的離心率為 ,則此雙曲線的方程為
A. B. C. D.
7.定義下列四個(gè)函數(shù)中,當(dāng)自變量 變?yōu)樵瓉淼?倍,函數(shù)值變?yōu)樵瓉淼?倍的函數(shù)是
A.函數(shù) ,其中自變量 為球半徑,函數(shù)值 為此球的體積
B.函數(shù) ,其中自變量 為圓錐底面半徑,函數(shù)值 為此圓錐的體積
C.函數(shù) ,函數(shù)值 為數(shù)據(jù) 都擴(kuò)大 倍后新數(shù)據(jù)的標(biāo)準(zhǔn)差
D.函數(shù) ,其中自變量 為球的表面積,函數(shù)值 為此球的體積。
8.如右圖所示的函數(shù)圖像,則它所對(duì)應(yīng)的函數(shù)解析式為
A. B.
C. D.
9.設(shè)在三角形ABC中,A、B、C的對(duì)邊分別為a、b、c,則直線 與直線 的位置關(guān)系是
A.垂直 B.平行且不重合
C.重合 D.相交且不垂直
10.如圖所示的程序框圖,它的輸出結(jié)果是
A. B. C. D.
11.在 中 ,向量 滿足 ,下列說法正確的是 ① ;② ;③存在非零實(shí)數(shù)使得
A. ①② B.①③ C.②③ D.①②③
12. 已知 , ,且 成等比數(shù)列,則
A.有最大值 B.有最大值 C.有最小值 D.有最小值
第Ⅱ卷(非選擇題 共90分)
注意事項(xiàng):
1. 第Ⅱ卷共2頁, 所有題目的答案考生須用0.5毫米黑色簽字筆在答題卡各題的答題區(qū)域內(nèi)作答;不能寫在試卷上; 如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不能使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效.作圖時(shí),可用2B鉛筆,要字體工整,筆跡清晰.在草稿紙上答題無效.考試結(jié)束后將答題卡上交.
2. 答卷前將密封線內(nèi)的項(xiàng)目填寫清楚,密封線內(nèi)答題無效.
二、 填空題:本大題共4個(gè)小題,每小題4分,共16分.
13.隨機(jī)抽取某中學(xué)甲乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖,甲班學(xué)生身高的眾數(shù)與乙班學(xué)生中位數(shù)之差為_________
14.已知 且 ,則
15.若 表示等差數(shù)列 的 項(xiàng)和,若 ,則 ______
16.函數(shù) ,在各項(xiàng)均為正數(shù)的數(shù)列 中對(duì)任意的 都有 成立,則數(shù)列 的通項(xiàng)公式為______
三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明、證明過程和演算步驟,務(wù)必在答題紙指定的位置作答。
17.在 中, 分別為 的對(duì)角,且 是 等差中項(xiàng).
(1)求 的值.
(2)若 的面積為 , 為 邊的中點(diǎn),求中線 的最小值.
18.(本小題滿分12分)
中國式過馬路,是網(wǎng)友對(duì)部分中國人集體闖紅燈現(xiàn)象的一種調(diào)侃,即,“湊夠一撮人就可以走了,和紅綠燈無關(guān)。我校對(duì)全校學(xué)生過馬路方式進(jìn)行調(diào)查,在所有參與調(diào)查的人中, “跟從別人闖紅燈”“從不闖紅燈”“帶頭闖紅燈”人數(shù)如表所示:
跟從別人闖紅燈從不闖紅燈帶頭闖紅燈
男生800450200
女生100150300
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取 個(gè)人,已知“跟從別人闖紅燈”的人中抽取45人,求 的值;
(2)在“帶頭闖紅燈”的人中,將男生的200人編號(hào)為001,002,…,200;將女生的300人編號(hào)為201,202,…,500,用系統(tǒng)抽樣的方法抽取4人參加”文明交通”宣傳活動(dòng),若抽取的第一個(gè)人的編號(hào)為100,把抽取的4人看成一個(gè)總體,從這4人中任選取2人,求這兩人均女生的概率;
19.(本小題滿分12分)
如圖所示,在直三棱柱 中,底面是邊長(zhǎng)為2 的正三角形,側(cè)棱長(zhǎng) , 是側(cè)棱 上任意一點(diǎn), 分別為 的中點(diǎn)。
(1)求證: ;
(2)當(dāng)面 平面 時(shí),判斷D點(diǎn)的位置。
(3)在(2)結(jié)論下,證明: 平面 。
20.在等比數(shù)列 中, 公比 ,且對(duì)任意的 ,都有
(1)求數(shù)列 的通項(xiàng)公式.
(2)若 表示數(shù)列 的 項(xiàng)和.前求數(shù)列 的前 項(xiàng)和 ,并求 的最小值.
21.若
(1)討論 的單調(diào)區(qū)間.
(2)當(dāng) 時(shí),設(shè) 上在兩不同點(diǎn) 處的切線相互平行,求 的最小值.
22.坐標(biāo)系 中,已知橢圓 : ( )的左焦點(diǎn)為 ,且點(diǎn) 在 上.
(1) 求橢圓 的方程;
(2) 若直線 : 同時(shí)與橢圓 和曲線 : 相切,求直線 的方程.
(3)直線 : 與橢圓交于 且 ,求證: 為定值
數(shù)學(xué)(文科)參考答案
一、選擇題:本大題共12小題;每小題5分,共60分.在每小題給出的個(gè)選項(xiàng)中,只有一個(gè)選項(xiàng)符合題目要求,把正確選項(xiàng)的代號(hào)涂在答題卡上.
1.【答案】 C
【解析】
2.【答案】 A
【解析】圖中陰影部分表示的集合為
3.【答案】 D
4.【答案】D
【解析】要求 的最大值,先求 的最小值.在 處取得最小值1,故 的最大值為
5. 【答案】 C
【解析】設(shè)正三角形的邊長(zhǎng) ,則其高為 ,主視圖與側(cè)視圖均為三角形且它們的高一致,主視圖的底邊長(zhǎng)為2,側(cè)視圖的底邊長(zhǎng)為 ,故面積之比為
6.
【答案】 D
【解析】由題意得 ,故雙曲線方程為 ,選D
7.【答案】 B
8.
【答案】 A
【解析】通過圖像可以分析出 在 處有意義且為奇函數(shù),增函數(shù),函數(shù)值有上下界. 為偶函數(shù), 值域?yàn)?, 為減函數(shù)且定義域中 .故只有A.
9.【答案】A
【解析】?jī)芍本的斜率均存在 ,則由正弦定理得 ,故選C
10.
【答案】 C
【解析】
不成立,進(jìn)入循環(huán);
不成立,進(jìn)入循環(huán);
不成立,進(jìn)入循環(huán);
不成立,進(jìn)入循環(huán);
不成立,進(jìn)入循環(huán);
成立,退出循環(huán);故輸出
11.
【答案】 C
【解析】由題意知 為等腰三角形,由 知 為 邊的中點(diǎn),故 成立; 故 成立. 直線AP為 的角平分線, 表示 的角平分線方向上的向量,故 與 共線.
12.
【答案】 B
【解析】 成等比數(shù)列得 ,
故 ,選B.
第Ⅱ卷(非選擇題 共90分)
二、 填空題:本大題共4個(gè)小題,每小題4分,共16分.
13. 3.5
14.【解析】由 知 ,只能是 ,所以
15.【解析】方法一: ,解得 , .
方法二: 故
方法三:由 成等差數(shù)列得 ,又 ,故 .
16.【解析】 ,由 得 為對(duì)稱軸,所以數(shù)列 是以 公差為 的等差數(shù)列.故 ,
三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明、證明過程和演算步驟,務(wù)必在答題紙指定的位置作答。
17.
【解析】
(1) 是等差中項(xiàng)
由正弦定理得:
故
在 中,
故
所以
(2)由題意知
故
由向量知識(shí)得
故
即
所以 的最小值為 .
18.解:(Ⅰ)由題意,得
(Ⅱ)由系統(tǒng)抽樣得的號(hào)碼分別為100,225,350,475,
其中100號(hào)為男生,設(shè)為A1,而225,350,475都為女生,分別設(shè)為B1,B2,B3
從這4人中任選取2人所有的基本事件為
(A1,B1),(A1,B2),(A1,B3),(B1,B2),(B1,B3),(B2,B3),共有6個(gè)
這兩人均女生的基本事件為
(B1,B2),(B1,B3),(B2,B3)共有3個(gè)
所以所求事件的概率
19.證明:(1)設(shè)AB中點(diǎn)為G,連結(jié)GE,GC。
為正三角形,且G為中點(diǎn),
又EG∥ ,
又
又因?yàn)镸N//AB,所以 面
而
(2)因?yàn)槊?平面 ,
面 面 ,
面 面
所以
所以D為 的中點(diǎn)
(3)因?yàn)镋G// ,且EG= , 為正三角形, ,
所以 , 四點(diǎn)共面且四邊形 為正方形
所以
又AB⊥CE,
所以
平面
(3)方法二(略證):過E點(diǎn)作 于F,則F為靠近 四等分點(diǎn),連結(jié)CF,CE.
可用初中三角形相似或建立平面坐標(biāo)系利用向量,直線斜率等
方法證明 ,
又
所以
所以
所以
又
所以
20.
【解析】因?yàn)閿?shù)列 是公比為 的等比數(shù)列,
所以 是公式為 的等比數(shù)列.
故
而
所以
整理得
所以
所以
(2) 數(shù)列 的 項(xiàng)和
所以
故
因?yàn)?,所以
所以 為遞增數(shù)列.
所以當(dāng) 時(shí) 有最小值
求 的最小值思路二:
令 得
此時(shí)二次函數(shù) 在 時(shí)為增函數(shù),
故當(dāng) 即 時(shí) 有最小值 .
21.
【解析】由 得
(1))令
則
①當(dāng) 時(shí), ,且 為開口向上的二次函數(shù),
故 恒成立
所以 恒成立
所以 在定義域 上為增函數(shù).
②當(dāng) 時(shí), ,且 為開口向下的二次函數(shù),
故 恒成立
所以 恒成立
所以 在定義域 上為減函數(shù).
③當(dāng) 時(shí),
有兩根
又因?yàn)?,所以 一定同號(hào).
(i)當(dāng) 時(shí), 均不在定義域內(nèi)
當(dāng) 時(shí) 恒成立.
所以 在定義域 上為減函數(shù).
(ii) 當(dāng) 時(shí)
令 得,
令 得
故此時(shí) 的增區(qū)間為
減區(qū)間為
綜上得:①當(dāng) 時(shí), 所以 在定義域 上為減函數(shù).
②當(dāng) 時(shí), 的增區(qū)間為
減區(qū)間為
③當(dāng) 時(shí), 所以 在定義域 上為增函數(shù).
(2)因?yàn)樵?處的切線相互平行
所以
即
整理得
當(dāng) 時(shí)
所以 的最小值為0.
22.
【解析】(1)因?yàn)闄E圓 的左焦點(diǎn)為 ,所以 ,
點(diǎn) 代入橢圓 ,得 ,即 ,
所以 ,
所以橢圓 的方程為 .
(2)直線 的斜率顯然存在,設(shè)直線 的方程為 ,
,消去 并整理得 ,(*)
因?yàn)橹本 與橢圓 相切,所以
整理得 ①
由直線 與 相切得,
即 ②
由①②得
故直線的方程為 .
(3)設(shè)
由(*)式得
本文來自:逍遙右腦記憶 http://www.portlandfoamroofing.com/gaosan/71493.html
相關(guān)閱讀:
2013年全國各地高考文科數(shù)學(xué)常用邏輯用語試題匯編
上一篇:
2013年4月高三數(shù)學(xué)理科二模試題(濟(jì)南人教B版有答案)
下一篇:
2013年4月高三數(shù)學(xué)理科模擬試卷(珠海市有答案)
相關(guān)主題
2013年全國各地高考文科數(shù)學(xué)常用邏輯用語試題匯編
2013年高考數(shù)學(xué)文科試題匯編-選修部分
陜西2013年高考文科數(shù)學(xué)試卷(附答案)
2013年高三上冊(cè)數(shù)學(xué)9月月考試題(理科)
2013年新課標(biāo)高考數(shù)學(xué)理科試題
2013年高三數(shù)學(xué)二模理科試卷(房山區(qū)附答案)
2013年高三數(shù)學(xué)二模理科試卷(徐匯區(qū)含答案)
2013年高考理科數(shù)學(xué)考前模擬試題(重慶市帶答案)
山東省2013年高考數(shù)學(xué)理科試題(含答案)
2013年房山區(qū)高三數(shù)學(xué)文科一模試題(附答案)
相關(guān)推薦
推薦閱讀
年高三理科數(shù)學(xué)上冊(cè)10月月考試題(有答案
屯溪一中高三第一次月考 試題(理數(shù)) 本試卷分選擇題、填空題和解答題三部分,共21個(gè)小題,……
2013年高考數(shù)學(xué)考前熱身理科試卷(附答案
2013深圳外國語學(xué)校綜合測(cè)試 理科數(shù)學(xué) 本試卷分第I卷()和第II卷(非)兩部分.共4頁.滿……
2013年高三理科數(shù)學(xué)二模試題(惠州有答案)
一、:本大題共8小題,每小題5分,滿分40分.在每小題給出的四個(gè)選項(xiàng)中.只有一項(xiàng)是符合題……
2012年高三文科數(shù)學(xué)10月月考試題(帶答案
屯溪一中2013屆高三第一次月考 試題(數(shù)) 本試卷分、題和解答題三部分,共21個(gè)小題,時(shí)間:……
山東省2013年高考數(shù)學(xué)試卷(理)
絕密★啟用并使用完畢前 2013年普通高等學(xué)校招生全國統(tǒng)一考試(山東卷) 理科數(shù)學(xué) 本試卷分第……
相關(guān)閱讀
安徽省2013年高考數(shù)學(xué)理科試題
2013高三理科數(shù)學(xué)二模試卷(閔行區(qū)有答案
2013年高三文科數(shù)學(xué)一模試卷(東城區(qū)含答
2013屆高考數(shù)學(xué)等差數(shù)列復(fù)習(xí)課件和訓(xùn)練題
2013屆高三數(shù)學(xué)算法初步與框圖檢測(cè)(附答
2012年寶安區(qū)高三數(shù)學(xué)上冊(cè)文科摸底考試試
2013高三文科二模數(shù)學(xué)試卷(楊浦等地有答
山東省2013年高考數(shù)學(xué)理科試題(含答案)
2013年高考數(shù)學(xué)理科押題試卷(附答案)
2013年5月高考數(shù)學(xué)二模文科試卷(含答案黃
右腦記憶論壇
|
快速記憶法
|
記憶力培訓(xùn)
|
速讀培訓(xùn)
|
速讀軟件
Copyright(C) 2006-2014
逍遙右腦
All Rights Reserved