逍遙右腦記憶網(wǎng)-免費提供各種記憶力訓(xùn)練學(xué)習(xí)方法!
超右腦
|
催眠術(shù)
|
潛能開發(fā)
|
影像閱讀
|
右腦開發(fā)訓(xùn)練
|
網(wǎng)站地圖
記憶方法
右腦開發(fā)
快速閱讀
思維導(dǎo)圖
學(xué)習(xí)方法
學(xué)習(xí)計劃
作文大全
早期教育
勵志名言
右腦記憶
記憶法
|
記憶宮殿
|
記憶力訓(xùn)練
記憶術(shù)
|
最強大腦
|
右腦記憶法
學(xué)習(xí)方法
高中學(xué)習(xí)方法
|
高考
|
小學(xué)資源
|
單詞記憶
初中學(xué)習(xí)方法
|
中考
|
教案設(shè)計
|
試題中心
潛能成功
吸引力法則
|
成功學(xué)
|
九型人格
注意力訓(xùn)練
|
潛意識
|
思維模式
初中學(xué)習(xí)方法
初中語文
初中英語
初中數(shù)學(xué)
初中物理
初中化學(xué)
初中生物
初中政治
初中歷史
初中地理
中考學(xué)習(xí)網(wǎng)
初一學(xué)習(xí)方法
初一語文
初一數(shù)學(xué)
初一英語
初一生物
初一政治
初一歷史
初一地理
初二物理
初一學(xué)習(xí)
初中教案
初二學(xué)習(xí)方法
初二語文
初二數(shù)學(xué)
初二英語
初二生物
初二政治
初二歷史
初二地理
初三物理
初二學(xué)習(xí)
初中試題
初三學(xué)習(xí)方法
初三語文
初三數(shù)學(xué)
初三英語
初三生物
初三政治
初三歷史
初三地理
初三化學(xué)
初三學(xué)習(xí)
初中作文
逍遙右腦記憶
>
教案設(shè)計
>
數(shù)學(xué)
>
九年級
>
九年級數(shù)學(xué)競賽從三角形的內(nèi)切圓談起強化輔導(dǎo)講座
編輯:
逍遙路
關(guān)鍵詞:
九年級
來源:
高中學(xué)習(xí)網(wǎng)
注:設(shè)Rt△ABC的各邊長分別為a、b、c (斜邊),運用切線長定理、面積等知識可得到其內(nèi)切圓半徑的不同表示式:
(1) ;
(2) .
請讀者給出證
【例題求解】
【例1】 如圖,在Rt△ABC中,∠C=90°°,BC=5,⊙O與Rt△ABC的三邊AB、BC、AC分相切于點D、E、F,若⊙O的半徑r=2,則Rt△ABC的 周長為 .
思路點撥 AF=AD,BE=BD,連OE、OF,則OECF為正方形,只需求出AF(或AD)即可.
【例2】 如圖,以定線段AB為直徑作半圓O,P為半圓上任意一點(異于A、B),過點P作半圓O的切線分別交過A、B兩點的切線于D、C,AC、BD相交于N點,連結(jié)ON,NP,下列結(jié)論:①四邊形ANPD是梯形;②ON=NP:③DP?P C為定值;④ FA為∠NPD的平分線,其中一定成立的是( )
A .①②③ B.②③④ C.①③④ D.①④
思路點撥 本例綜合了切線的性質(zhì)、切線長定理、相似三角形,判定性質(zhì)等重要幾何知識,注意基本輔助線的添出、基本圖形識別、等線段代換,推導(dǎo)出NP∥AD∥BC是解本例的關(guān)鍵.
【例3】 如圖,已知 ∠ACP=∠CDE=90°,點B在CE上,CA=CB=CD,過A、C、D三點的圓交AB于F,求證:F為△CDE的內(nèi)心.
(全國初中數(shù)學(xué)聯(lián)賽試題)
思路點撥 連CF、DF,即需證F為△CDE角平分線的交點,充分利用與圓有關(guān)的角,將問題轉(zhuǎn)化 為角相等問題的證明.
【例4】 如圖,在直角梯形ABCD中,AD∥BC,AB⊥BC,AB=BC=1,以AB為直徑作半圓O切CD于E,連結(jié)OE,并延長交AD的延長線于F.
(1)問∠BOZ能否為120°,并簡要說明理由;
(2)證明△AOF∽△EDF,且 ;
(3)求DF的長.
思路點撥 分解出基本圖形,作出基本輔助線.(1)若∠BOZ=120°,看能否推出矛盾;(2)把計算與推理融合;(3)把相應(yīng)線段用DF的代數(shù)式表示,利用勾股定理建立關(guān)于DF的一元二次方程.
注: 如圖,在直角梯形ABCD中,若AD+BC=CD,則可得到應(yīng)用廣泛的兩個性質(zhì):
(1)以邊AB為直徑的圓與邊CD相切;
(2)以邊CD為直徑的圓與邊AB相切.
類似地,三角形三條中線的交點叫三角形的重心,三角形三邊高所在的直線的交點叫三角形的垂心.外心、內(nèi)心、垂心、重心統(tǒng)稱三角形的四心,它們處在三角而中的特殊位置上,有著豐富的性質(zhì),在解題中有廣泛的應(yīng)用.
【例5】 如圖,已知Rt△ABC中,CD是斜邊AB上的高,O、O1、O2分別是△ABC;△ACD、△BCD的角平分線的交點,求證:(1) O1O⊥C O2;(2)OC= O1O2.
(武漢市選拔賽試題)
思路點撥 在直角三角形中,斜邊上的高將它分成 的兩個直角三角形和原三角形相似,得對應(yīng)角相等,所以通過證交角為90°的方法得兩線垂直,又利用全等三角形證明兩線段相 等.
學(xué)力訓(xùn)練
1.如圖,已知圓外切等腰梯形ABCD的中位線EF=15cm,那么等腰梯形ABCD的周長等于= cm.
2.如圖,在直角,坐標(biāo)系中A、B的坐標(biāo)分別為(3,0)、(0,4),則Rt△ABO內(nèi)心的坐標(biāo)是 .
3.如圖,梯形ABCD中,AD∥BC, DC⊥BC,AB=8,BC=5,若以AB為直徑的⊙O與DC相切于E,則DC= . (云南省曲靖市中考題)
4.如圖,⊙O為△ABC的內(nèi)切圓,∠C=90°,A O的延長線交BC于點D,AC=4,CD=1,則⊙O的半徑等于( )
A. B. C. D.
(重慶市中考題)
5.如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點E,這個梯形的面積為21cm2,周長為20cm,那么半圓O的半徑為( )
A.3cm B.7cm C .3cm或7cm D. 2cm
6.如圖,△ABC中,內(nèi)切圓O和邊B、CA、AB分別相切于點D、EF,則以下四個結(jié)論中,錯誤的結(jié)論是( )
A.點O是△DEF的外心 B.∠AFE= (∠B+∠C)
C.∠BOC=90°+ ∠A D.∠DFE=90°一 ∠B
7.如圖,BC是⊙O的直徑,AB、AD是⊙O的切線,切點分別為B、P,過C點的切線與AD交于點D,連結(jié)AO、DO.
(1)求證:△ABO∽△OCD;
(2)若AB、CD是關(guān)于x的方程 的兩個實數(shù)根,且S△ABO+ S△OCD=20,求m的值.
8.如圖,已知AB是⊙O的直徑,BC是⊙O的切線,OC與⊙O相交于點D,連結(jié)AD并延長,BC相交于點E.
(1)若BC= ,CD=1,求⊙O的半徑;
(2)取BE的中點F,連結(jié)DF,求證:DF是⊙O的切線;
(3)過D點作DG⊥BC于G,OG與DG相交于點M,求證:DM=GM.
9.如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=13cm,BC=16cm,CD=5cm,AB為⊙O的直徑,動點P沿AD方向從點A開始向點D以1cm/秒的速度運動,動點Q沿CB方向從點C開始向點B以2cm/秒的速度運動,點P、Q分別從A、C兩點同時出發(fā),當(dāng)其中一點停止時,另一點也隨之停止運動.
(1)求⊙O的直徑;
(2)求四邊形PQCD的面積y關(guān)于P、Q運動時間t的函數(shù)關(guān)系式,并求當(dāng)四邊形PQCD為等腰梯形時,四邊形PQCP的面積;
(3)是否存在某時刻t,使直線PQ與⊙O相切,若存在,求出t 的值;若不存在,請說明理由. (2002年煙臺市中考題)
10.已知在△ABC中,∠C=90°,AC=4,BC=3,CD為AB上的高,Ol、O2分別為△ACD、△BCD的內(nèi)心,則OlO2= .
11.如圖,在△ABC中,∠C=90°,∠A和∠B的平分線相交于P點,又PE⊥AB于點E,若BC=2,AC=3,則AE?EB= .
12.如果一個三角形的面積和周長都被一直線所平分,那么該直線必通過這個三角形的( )
A.內(nèi)心 B.外心 C.圓心 D.重心
13.如圖,AD是△ABC的角平分線,⊙O過點AB和BC相切于點P,和AB、AC分別交于點E,F(xiàn),若BD=AE,且BE=a,CF=b,則AF的長為( )
A. B. C. D.
14.如圖,在矩形ABCD中,連結(jié)AC,如果O為△ABC的內(nèi)心,過O作OE⊥AD于E,作OF⊥CD于F,則矩形OFDE的面積與矩形ABCD的面積的比值為( )
A. B. C. D.不能確定
(《學(xué)習(xí)報》公開賽試題)
15.如圖,AB是半圓的直徑,AC為半圓的切線,AC=AB.在半圓上任取一點D,作DE⊥CD,交直線AB于點F,BF⊥AB,交線段AD的延長線于點F.
(1)設(shè)AD是x°的弧,并要使點E在線段BA的延長線上,則x的取值范圍是 ;
(2)不論D點取在半圓什么位置,圖中除AB=AC外,還有兩條線段一定相等,指出這兩條相等的線段,并予證明.
16.如圖,△ABC的三邊滿足關(guān)系BC= (AB+AC),O、I分別為△ABC的外心、內(nèi)心,∠ BAC的外角平分線交⊙O于E,AI的延長線交⊙O于D,DE交BC于H.
求證:(1)AI=BD;(2)OI= AE.
17.如圖,已知AB是⊙O的直徑,BC是⊙O的切線,OC平行于弦AD,過點D作DE⊥AB于點E,連結(jié)AC,與DE交于點F,問EP與PD是否相等?證明你的結(jié)論.
18.如圖,已知點P在半徑為6,圓心角為90°的扇形OAB的AB(不含端點)上運動,PH⊥OA于H,△OPH的重心為G.
(1)當(dāng)點P在AB上運動時,線段GO、GP、GH中有無長度保持不變的線段?如果有,請指出并求出其相應(yīng)的長度;
(2)設(shè)PH= x,GP=y,求y關(guān)于x的函數(shù)解析式,并指出自變量x的取值范圍;
本文來自:逍遙右腦記憶 http://www.portlandfoamroofing.com/chusan/75464.html
相關(guān)閱讀:
九年級數(shù)學(xué)競賽圓與圓輔導(dǎo)教案
上一篇:
相似三角形的應(yīng)用舉例
下一篇:
2012年中考數(shù)學(xué)知識點幾何應(yīng)用題備考復(fù)習(xí)
相關(guān)主題
九年級數(shù)學(xué)競賽圓與圓輔導(dǎo)教案
九年級數(shù)學(xué)競賽避免漏解的奧秘輔導(dǎo)教案
九年級數(shù)學(xué)上冊第22章一元二次方程教學(xué)案(五份)
中考數(shù)學(xué)整體思想與特殊值復(fù)習(xí)教案
初三數(shù)學(xué)第24章圓導(dǎo)學(xué)案
中考數(shù)學(xué)圖表信息題復(fù)習(xí)教案
九年級數(shù)學(xué)競賽幾何的定值與最值輔導(dǎo)教案
九年級數(shù)學(xué)競賽解直角三角形教案
2012年中考數(shù)學(xué)一輪復(fù)習(xí)精品講義(第5章相交線與平行線)
中考數(shù)學(xué)閱讀理解題復(fù)習(xí)教案
相關(guān)推薦
推薦閱讀
二次函數(shù)的圖象
學(xué) 校北安中學(xué)教 者翟德闖年 級九年級學(xué)科數(shù)學(xué) 設(shè)計來源自我設(shè)計教學(xué)時間 教 材 分 析 1本……
人口普查和抽樣調(diào)查導(dǎo)學(xué)案
《人口普查和抽樣調(diào)查》第一課時 --------導(dǎo)學(xué)案 導(dǎo)學(xué)人 侯世龍 導(dǎo)學(xué)目標(biāo)1、讓學(xué)生知道普查……
直線與圓的位置關(guān)系
學(xué)習(xí)目標(biāo): 1.了解三角形的內(nèi)切圓、三角形的外心、圓的外切三角形的概念. 2.會作已知三……
2012年中考數(shù)學(xué)一輪復(fù)習(xí)有理數(shù)精品講義
2012年中考數(shù)學(xué)一輪復(fù)習(xí)精品講義 第一章 有理數(shù) 本章小結(jié) 小結(jié)1 本章概述 本章的知識要點主……
平行線分三角形兩邊成比例
19.3平行線分三角形兩邊成比例(一) 教學(xué)目標(biāo)知識目標(biāo): 1.理解平行線分三角形兩邊成比例……
相關(guān)閱讀
三角函數(shù)的有關(guān)計算
中考數(shù)學(xué)平面直角坐標(biāo)系與函數(shù)的概念復(fù)習(xí)
中考數(shù)學(xué)圖表信息題復(fù)習(xí)教案
點與圓的位置關(guān)系
九年級上冊數(shù)學(xué)第五章中心對稱圖形導(dǎo)學(xué)案
中心對稱圖形學(xué)案
一元二次方程學(xué)案
用因式分解法解一元二次方程學(xué)案
圓導(dǎo)學(xué)案
中考數(shù)學(xué)復(fù)習(xí)矩形、菱形、正方形教案
右腦記憶論壇
|
快速記憶法
|
記憶力培訓(xùn)
|
速讀培訓(xùn)
|
速讀軟件
|
Copyright(C) 2006-2014
逍遙右腦
All Rights Reserved