逍遙右腦記憶網(wǎng)-免費(fèi)提供各種記憶力訓(xùn)練學(xué)習(xí)方法!
超右腦
|
催眠術(shù)
|
潛能開發(fā)
|
影像閱讀
|
右腦開發(fā)訓(xùn)練
|
網(wǎng)站地圖
記憶方法
右腦開發(fā)
快速閱讀
思維導(dǎo)圖
學(xué)習(xí)方法
學(xué)習(xí)計(jì)劃
作文大全
早期教育
勵(lì)志名言
右腦記憶
記憶法
|
記憶宮殿
|
記憶力訓(xùn)練
記憶術(shù)
|
最強(qiáng)大腦
|
右腦記憶法
學(xué)習(xí)方法
高中學(xué)習(xí)方法
|
高考
|
小學(xué)資源
|
單詞記憶
初中學(xué)習(xí)方法
|
中考
|
教案設(shè)計(jì)
|
試題中心
潛能成功
吸引力法則
|
成功學(xué)
|
九型人格
注意力訓(xùn)練
|
潛意識(shí)
|
思維模式
高中學(xué)習(xí)方法
高中語(yǔ)文
高中英語(yǔ)
高中數(shù)學(xué)
高中物理
高中化學(xué)
高中生物
高中政治
高中歷史
高中地理
高中教案
高中試題
高一學(xué)習(xí)方法
高一語(yǔ)文
高一數(shù)學(xué)
高一英語(yǔ)
高一物理
高一化學(xué)
高一生物
高一政治
高一歷史
高一地理
高一學(xué)習(xí)
高二學(xué)習(xí)方法
高二語(yǔ)文
高二數(shù)學(xué)
高二英語(yǔ)
高二物理
高二化學(xué)
高二生物
高二政治
高二歷史
高二地理
高二學(xué)習(xí)
高三學(xué)習(xí)方法
高三語(yǔ)文
高三數(shù)學(xué)
高三英語(yǔ)
高三物理
高三化學(xué)
高三生物
高三政治
高三歷史
高三地理
高三學(xué)習(xí)
逍遙右腦記憶
>
試題中心
>
數(shù)學(xué)
>
高二
>
高二數(shù)學(xué)數(shù)學(xué)歸納法綜合測(cè)試題(帶答案)
編輯:
逍遙路
關(guān)鍵詞:
高二
來(lái)源:
高中學(xué)習(xí)網(wǎng)
選修2-2 2. 3 數(shù)學(xué)歸納法
一、
1.用數(shù)學(xué)歸納法證明1+12+13+…+12n-1
1)時(shí),第一步應(yīng)驗(yàn)證不等式( )
A.1+12<2
B.1+12+13<2
C.1+12+13<3
D.1+12+13+14<3
[答案] B
[解析] ∵n∈N*,n>1,∴n取第一個(gè)自然數(shù)為2,左端分母最大的項(xiàng)為122-1=13,故選B.
2.用數(shù)學(xué)歸納法證明1+a+a2+…+an+1=1-an+21-a(n∈N*,a≠1),在驗(yàn)證n=1時(shí),左邊所得的項(xiàng)為( )
A.1
B.1+a+a2
C.1+a
D.1+a+a2+a3
[答案] B
[解析] 因?yàn)楫?dāng)n=1時(shí),an+1=a2,所以此時(shí)式子左邊=1+a+a2.故應(yīng)選B.
3.設(shè)f(n)=1n+1+1n+2+…+12n(n∈N*),那么f(n+1)-f(n)等于( )
A.12n+1 B.12n+2
C.12n+1+12n+2 D.12n+1-12n+2
[答案] D
[解析] f(n+1)-f(n)
=1(n+1)+1+1(n+1)+2+…+12n+12n+1+12(n+1)
-1n+1+1n+2+…+12n=12n+1+12(n+1)-1n+1
=12n+1-12n+2.
4.某個(gè)命題與自然數(shù)n有關(guān),若n=k(k∈N*)時(shí),該命題成立,那么可推得n=k+1時(shí)該命題也成立.現(xiàn)在已知當(dāng)n=5時(shí),該命題不成立,那么可推得( )
A.當(dāng)n=6時(shí)該命題不成立
B.當(dāng)n=6時(shí)該命題成立
C.當(dāng)n=4時(shí)該命題不成立
D.當(dāng)n=4時(shí)該命題成立
[答案] C
[解析] 原命題正確,則逆否命題正確.故應(yīng)選C.
5.用數(shù)學(xué)歸納法證明命題“當(dāng)n是正奇數(shù)時(shí),xn+yn能被x+y整除”,在第二步的證明時(shí),正確的證法是( )
A.假設(shè)n=k(k∈N*),證明n=k+1時(shí)命題也成立
B.假設(shè)n=k(k是正奇數(shù)),證明n=k+1時(shí)命題也成立
C.假設(shè)n=k(k是正奇數(shù)),證明n=k+2時(shí)命題也成立
D.假設(shè)n=2k+1(k∈N),證明n=k+1時(shí)命題也成立
[答案] C
[解析] ∵n為正奇數(shù),當(dāng)n=k時(shí),k下面第一個(gè)正奇數(shù)應(yīng)為k+2,而非k+1.故應(yīng)選C.
6.凸n邊形有f(n)條對(duì)角線,則凸n+1邊形對(duì)角線的條數(shù)f(n+1)為( )
A.f(n)+n+1
B.f(n)+n
C.f(n)+n-1
D.f(n)+n-2
[答案] C
[解析] 增加一個(gè)頂點(diǎn),就增加n+1-3條對(duì)角線,另外原來(lái)的一邊也變成了對(duì)角線,故f(n+1)=f(n)+1+n+1-3=f(n)+n-1.故應(yīng)選C.
7.用數(shù)學(xué)歸納法證明“對(duì)一切n∈N*,都有2n>n2-2”這一命題,證明過(guò)程中應(yīng)驗(yàn)證( )
A.n=1時(shí)命題成立
B.n=1,n=2時(shí)命題成立
C.n=3時(shí)命題成立
D.n=1,n=2,n=3時(shí)命題成立
[答案] D
[解析] 假設(shè)n=k時(shí)不等式成立,即2k>k2-2,
當(dāng)n=k+1時(shí)2k+1=2?2k>2(k2-2)
由2(k2-2)≥(k-1)2-4?k2-2k-3≥0
?(k+1)(k-3)≥0?k≥3,因此需要驗(yàn)證n=1,2,3時(shí)命題成立.故應(yīng)選D.
8.已知f(n)=(2n+7)?3n+9,存在自然數(shù)m,使得對(duì)任意n∈N*,都能使m整除f(n),則最大的m的值為( )
A.30
B.26
C.36
D.6
[答案] C
[解析] 因?yàn)閒(1)=36,f(2)=108=3×36,f(3)=360=10×36,所以f(1),f(2),f(3)能被36整除,推測(cè)最大的m值為36.
9.已知數(shù)列{an}的前n項(xiàng)和Sn=n2an(n≥2),而a1=1,通過(guò)計(jì)算a2、a3、a4,猜想an=( )
A.2(n+1)2
B.2n(n+1)
C.22n-1
D.22n-1
[答案] B
[解析] 由Sn=n2an知Sn+1=(n+1)2an+1
∴Sn+1-Sn=(n+1)2an+1-n2an
∴an+1=(n+1)2an+1-n2an
∴an+1=nn+2an (n≥2).
當(dāng)n=2時(shí),S2=4a2,又S2=a1+a2,∴a2=a13=13
a3=24a2=16,a4=35a3=110.
由a1=1,a2=13,a3=16,a4=110
猜想an=2n(n+1),故選B.
10.對(duì)于不等式n2+n≤n+1(n∈N+),某學(xué)生的證明過(guò)程如下:
(1)當(dāng)n=1時(shí),12+1≤1+1,不等式成立.
(2)假設(shè)n=k(k∈N+)時(shí),不等式成立,即k2+k
∴當(dāng)n=k+1時(shí),不等式成立,上述證法( )
A.過(guò)程全都正確
B.n=1驗(yàn)證不正確
C.歸納假設(shè)不正確
D.從n=k到n=k+1的推理不正確
[答案] D
[解析] n=1的驗(yàn)證及歸納假設(shè)都正確,但從n=k到n=k+1的推理中沒有使用歸納假設(shè),而通過(guò)不等式的放縮法直接證明,不符合數(shù)學(xué)歸納法的證題要求.故應(yīng)選D.
二、題
11.用數(shù)學(xué)歸納法證明“2n+1≥n2+n+2(n∈N*)”時(shí),第一步的驗(yàn)證為________.
[答案] 當(dāng)n=1時(shí),左邊=4,右邊=4,左≥右,不等式成立
[解析] 當(dāng)n=1時(shí),左≥右,不等式成立,
∵n∈N*,∴第一步的驗(yàn)證為n=1的情形.
12.已知數(shù)列11×2,12×3,13×4,…,1n(n+1),通過(guò)計(jì)算得S1=12,S2=23,S3=34,由此可猜測(cè)Sn=________.
[答案] nn+1
[解析] 解法1:通過(guò)計(jì)算易得答案.
解法2:Sn=11×2+12×3+13×4+…+1n(n+1)
=1-12+12-13+13-14+…+1n-1n+1
=1-1n+1=nn+1.
13.對(duì)任意n∈N*,34n+2+a2n+1都能被14整除,則最小的自然數(shù)a=________.
[答案] 5
[解析] 當(dāng)n=1時(shí),36+a3能被14整除的數(shù)為a=3或5,當(dāng)a=3時(shí)且n=3時(shí),310+35不能被14整除,故a=5.
14.用數(shù)學(xué)歸納法證明命題:1×4+2×7+3×10+…+n(3n+1)=n(n+1)2.
(1)當(dāng)n0=________時(shí),左邊=____________,右邊=______________________;當(dāng)n=k時(shí),等式左邊共有________________項(xiàng),第(k-1)項(xiàng)是__________________.
(2)假設(shè)n=k時(shí)命題成立,即_____________________________________成立.
(3)當(dāng)n=k+1時(shí),命題的形式是______________________________________;此時(shí),左邊增加的項(xiàng)為______________________.
[答案] (1)1;1×(3×1+1);1×(1+1)2;k;
(k-1)[3(k-1)+1]
(2)1×4+2×7+3×10+…+k(3k+1)=k(k+1)2
(3)1×4+2×7+…+(k+1)[3(k+1)+1]
=(k+1)[(k+1)+1]2;(k+1)[3(k+1)+1]
[解析] 由數(shù)學(xué)歸納法的法則易知.
三、解答題
15.求證:12-22+32-42+…+(2n-1)2-(2n)2=-n(2n+1)(n∈N*).
[證明]、賜=1時(shí),左邊=12-22=-3,右邊=-3,等式成立.
②假設(shè)n=k時(shí),等式成立,即12-22+32-42+…+(2k-1)2-(2k)2=-k(2k+1)2.
當(dāng)n=k+1時(shí),12-22+32-42+…+(2k-1)2-(2k)2+(2k+1)2-(2k+2)2=-k(2k+1)+(2k+1)2-(2k+2)2=-k(2k+1)-(4k+3)=-(2k2+5k+3)=-(k+1)[2(k+1)+1],所以n=k+1時(shí),等式也成立.
由①②得,等式對(duì)任何n∈N*都成立.
16.求證:12+13+14+…+12n-1>n-22(n≥2).
[證明] ①當(dāng)n=2時(shí),左=12>0=右,
∴不等式成立.
②假設(shè)當(dāng)n=k(k≥2,k∈N*)時(shí),不等式成立.
即12+13+…+12k-1>k-22成立.
那么n=k+1時(shí),12+13+…+12k-1
+12k-1+1+…+12k-1+2k-1
>k-22+12k-1+1+…+12k>k-22+12k+12k+…+12k
=k-22+2k-12k=(k+1)-22,
∴當(dāng)n=k+1時(shí),不等式成立.
據(jù)①②可知,不等式對(duì)一切n∈N*且n≥2時(shí)成立.
17.在平面內(nèi)有n條直線,其中每?jī)蓷l直線相交于一點(diǎn),并且每三條直線都不相交于同一點(diǎn).
求證:這n條直線將它們所在的平面分成n2+n+22個(gè)區(qū)域.
[證明] (1)n=2時(shí),兩條直線相交把平面分成4個(gè)區(qū)域,命題成立.
(2)假設(shè)當(dāng)n=k(k≥2)時(shí),k條直線將平面分成k2+k+22塊不同的區(qū)域,命題成立.
當(dāng)n=k+1時(shí),設(shè)其中的一條直線為l,其余k條直線將平面分成k2+k+22塊區(qū)域,直線l與其余k條直線相交,得到k個(gè)不同的交點(diǎn),這k個(gè)點(diǎn)將l分成k+1段,每段都將它所在的區(qū)域分成兩部分,故新增區(qū)域k+1塊.
從而k+1條直線將平面分成k2+k+22+k+1=(k+1)2+(k+1)+22塊區(qū)域.
所以n=k+1時(shí)命題也成立.
由(1)(2)可知,原命題成立.
18.(2010?衡水高二檢測(cè))試比較2n+2與n2的大小(n∈N*),并用數(shù)學(xué)歸納法證明你的結(jié)論.
[分析] 由題目可獲取以下主要信息:
①此題選用特殊值來(lái)找到2n+2與n2的大小關(guān)系;
②利用數(shù)學(xué)歸納法證明猜想的結(jié)論.
解答本題的關(guān)鍵是先利用特殊值猜想.
[解析] 當(dāng)n=1時(shí),21+2=4>n2=1,
當(dāng)n=2時(shí),22+2=6>n2=4,
當(dāng)n=3時(shí),23+2=10>n2=9,
當(dāng)n=4時(shí),24+2=18>n2=16,
由此可以猜想,
2n+2>n2(n∈N*)成立
下面用數(shù)學(xué)歸納法證明:
(1)當(dāng)n=1時(shí),
左邊=21+2=4,右邊=1,
所以左邊>右邊,
所以原不等式成立.
當(dāng)n=2時(shí),左邊=22+2=6,
右邊=22=4,所以左邊>右邊;
當(dāng)n=3時(shí),左邊=23+2=10,右邊=32=9,
所以左邊>右邊.
(2)假設(shè)n=k時(shí)(k≥3且k∈N*)時(shí),不等式成立,
即2k+2>k2.那么n=k+1時(shí),
2k+1+2=2?2k+2=2(2k+2)-2>2?k2-2.
又因:2k2-2-(k+1)2=k2-2k-3
=(k-3)(k+1)≥0,
即2k2-2≥(k+1)2,故2k+1+2>(k+1)2成立.
本文來(lái)自:逍遙右腦記憶 http://www.portlandfoamroofing.com/gaoer/54964.html
相關(guān)閱讀:
2013年高二數(shù)學(xué)上冊(cè)期中調(diào)研測(cè)試題(含答案)
上一篇:
瀏陽(yáng)一中2014年下期高二數(shù)學(xué)上冊(cè)期中段考試題(有答案)
下一篇:
2013年高二下冊(cè)數(shù)學(xué)理科期末模擬試題(附答案蘇教版)
相關(guān)主題
2013年高二數(shù)學(xué)上冊(cè)期中調(diào)研測(cè)試題(含答案)
高二年級(jí)上冊(cè)數(shù)學(xué)4份章末質(zhì)量評(píng)估模塊測(cè)試卷(附答案)
2013年高二文科數(shù)學(xué)上學(xué)期期中復(fù)習(xí)試題(附答案)
2013年高二上學(xué)期期中考試數(shù)學(xué)文科試題(有答案)
高二數(shù)學(xué)上冊(cè)第一次月考調(diào)研檢測(cè)試題(含參考答案)
高二數(shù)學(xué)幾個(gè)常用的函數(shù)的導(dǎo)數(shù)綜合測(cè)試題(附答案)
2014-2014學(xué)年高二數(shù)學(xué)上冊(cè)9月聯(lián)考測(cè)試題(有答案)
2013年高二下學(xué)期數(shù)學(xué)文科期中試卷(福州含答案)
揚(yáng)州2014-2014學(xué)年高二上冊(cè)數(shù)學(xué)期中試卷及答案
2014年下期高二數(shù)學(xué)上冊(cè)期中段考試題(附答案)
相關(guān)推薦
推薦閱讀
高中數(shù)學(xué)選修4-4模塊測(cè)試題和答案(新課
選修4-4模塊模擬檢測(cè) 本試卷分Ⅰ卷()和第Ⅱ卷(非)兩部分。第Ⅰ卷50分,第Ⅱ卷100分,共……
2012年高二數(shù)學(xué)下學(xué)期綜合題二(選修2—2
高二下學(xué)期數(shù)學(xué)綜合題YCY 一、: 1.復(fù)數(shù) +2等于( ) A.2-2iB.-2iC. D.2i 2.對(duì)兩個(gè)……
高二數(shù)學(xué)上冊(cè)第一次月考調(diào)研檢測(cè)試題
高三文科班 數(shù)學(xué) 試題卷 一.( ) 1.設(shè)全集 ,集合 ,則 = ( ) A. B. C. D. 2.函數(shù) 的……
2013-2014學(xué)年高二數(shù)學(xué)上冊(cè)9月月考檢測(cè)試
藁城市第一中學(xué)2013-2014學(xué)年第一學(xué)期第一次月考 高二數(shù)學(xué)試卷 一.(共12小題,每題5分,……
高二數(shù)學(xué)必修三第一章算法初步課堂訓(xùn)練試
1.1.2程序框圖與算法的基本邏輯結(jié)構(gòu) 第1課時(shí) ?學(xué)習(xí)目標(biāo): 通過(guò)本節(jié)學(xué)習(xí),掌握①了解程序框圖……
相關(guān)閱讀
永泰城關(guān)中學(xué)2012高二數(shù)學(xué)下冊(cè)月考試卷(
瀏陽(yáng)一中2014年下期高二數(shù)學(xué)上冊(cè)期中段考
2012高二數(shù)學(xué)下學(xué)期綜合題一(選修2—2與
余弦定理綜合測(cè)試題
最小二乘估計(jì)檢測(cè)試題(含答案)
循環(huán)語(yǔ)句檢測(cè)試題
2012年高二下文科數(shù)學(xué)期中試卷及答案
高二數(shù)學(xué)下冊(cè)實(shí)際問(wèn)題中導(dǎo)數(shù)的意義課時(shí)訓(xùn)
2012年高二上冊(cè)數(shù)學(xué)期末考試題(帶答案)
汕頭市金山中學(xué)2011-2012年高二數(shù)學(xué)下冊(cè)
右腦記憶論壇
|
快速記憶法
|
記憶力培訓(xùn)
|
速讀培訓(xùn)
|
速讀軟件
Copyright(C) 2006-2014
逍遙右腦
All Rights Reserved