2013年全國(guó)高校自主招生數(shù)學(xué)模擬試卷六一、選擇題(36分)1.刪去正整數(shù)數(shù)列1,2,3,……中的所有完全平方數(shù),得到一個(gè)新數(shù)列.這個(gè)數(shù)列的第2003項(xiàng)是 (A) 2046 (B) 2047 (C) 2048 (D) 20492.設(shè)a,b∈R,ab≠0,那么直線ax-y+b=0和曲線bx2+ay2=ab的圖形是 3.過拋物線y2=8(x+2)的焦點(diǎn)F作傾斜角為60°的直線,若此直線與拋物線交于A、B兩點(diǎn),弦AB的中垂線與x軸交于點(diǎn)P,則線段PF的長(zhǎng)等于(A) 163 (B) 83 (C) 1633 (D) 83 4.若x∈[-512 ,-3 ],則y=tan(x+23 )-tan(x+6 )+cos(x+6 )的最大值是 (A) 1252 (B) 1162 (C) 1163 (D) 1253 5.已知x,y都在區(qū)間(-2,2)內(nèi),且xy=-1,則函數(shù)u=44-x2+99-y2的最小值是(A) 85 (B) 2411 (C) 127 (D) 1256.在四面體ABCD中, 設(shè)AB=1,CD=3,直線AB與CD的距離為2,夾角為3,則四面體ABCD的體積等于 (A) 32 (B) 12 (C) 13 (D) 33二.填空題(每小題9分,共54分)7.不等式x3-2x2-4x+3<0的解集是 .8.設(shè)F1、F2是橢圓x29+y24=1的兩個(gè)焦點(diǎn),P是橢圓上一點(diǎn),且PF1∶PF2=2∶1,則△PF1F2的面積等于 .9.已知A={xx2-4x+3<0,x∈R},B={x21-x+a≤0,x2-2(a+7)x+5≤0,x∈R}若AB,則實(shí)數(shù)a的取值范圍是 .10.已知a,b,c,d均為正整數(shù),且logab=32,logcd=54,若a-c=9,則b-d= .11.將八個(gè)半徑都為1的球分放兩層放置在一個(gè)圓柱內(nèi),并使得每個(gè)球都和其相鄰的四個(gè)球相切,且與圓柱的一個(gè)底面及側(cè)面都相切,則此圓柱的高等于 .12. 設(shè)n={(十進(jìn)制)n位純小數(shù)0.-a1a2…anai只取0或1(i=1,2,…,n-1),an=1},Tn 是n中元素的個(gè)數(shù),Sn是n中所有元素的和,則lin→∞SnTn= .三、(20分)13.設(shè)32≤x≤5,證明不等式 2x+1+2x-3+15-3x<219.
四、(20分)14.設(shè)A、B、C分別是復(fù)數(shù)Z0=ai,Z1=12+bi,Z2=1+ci(其中a,b,c都是實(shí)數(shù))對(duì)應(yīng)的不共線的三點(diǎn).證明:曲線 Z=Z0cos4t+2Z1cos2tsin2t+Z2sin4t (t∈R)與△ABC中平行于AC的中位線只有一個(gè)公共點(diǎn),并求出此點(diǎn).
五、(本題滿分20分) 15.一張紙上畫有一個(gè)半徑為R的圓O和圓內(nèi)一個(gè)定點(diǎn)A,且OA=a,折疊紙片,使圓周上某一點(diǎn)A剛好與點(diǎn)A重合.這樣的每一種折法,都留下一條折痕.當(dāng)A取遍圓周上所有點(diǎn)時(shí),求所有折痕所在直線上點(diǎn)的集合.2013年全國(guó)高校自主招生數(shù)學(xué)模擬試卷六參考答案一、選擇題(每小題6分,共36分)1.刪去正整數(shù)數(shù)列1,2,3,……中的所有完全平方數(shù),得到一個(gè)新數(shù)列.這個(gè)數(shù)列的第2003項(xiàng)是 (A) 2046 (B) 2047 (C) 2048 (D) 2049解:452=2025,462=2116.在1至2025之間有完全平方數(shù)45個(gè),而2026至2115之間沒有完全平方數(shù).故1至2025中共有新數(shù)列中的2025-45=1980項(xiàng).還缺2003-1980=23項(xiàng).由2025+23=2048.知選C.2.設(shè)a,b∈R,ab≠0,那么直線ax-y+b=0和曲線bx2+ay2=ab的圖形是 解:曲線方程為x2a+y2b=1,直線方程為y=ax+b.由直線圖形,可知A、C中的a<0,A圖的b>0,C圖的b<0,與A、C中曲線為橢圓矛盾.由直線圖形,可知B、D中的a>0,b<0,則曲線為焦點(diǎn)在x軸上的雙曲線,故選B. 3.過拋物線y2=8(x+2)的焦點(diǎn)F作傾斜角為60°的直線,若此直線與拋物線交于A、B兩點(diǎn),弦AB的中垂線與x軸交于點(diǎn)P,則線段PF的長(zhǎng)等于(A) 163 (B) 83 (C) 1633 (D) 83解:拋物線的焦點(diǎn)為原點(diǎn)(0,0),弦AB所在直線方程為y=3x,弦的中點(diǎn)在y=pk=43上,即AB中點(diǎn)為(43,43),中垂線方程為y=-33(x-43)+43,令y=0,得點(diǎn)P的坐標(biāo)為163.∴ PF=163.選A.4.若x∈[-512 ,-3],則y=tan(x+23)-tan(x+6)+cos(x+6)的最大值是 (A) 1252 (B) 1162 (C) 1163 (D) 1253解:令x+6=u,則x+23=u+2,當(dāng)x∈[-512,-3]時(shí),u∈[-4,-6],y=-(cotu+tanu)+cosu=-2sin2u+cosu.在u∈[-4,-6]時(shí),sin2u與cosu都單調(diào)遞增,從而y單調(diào)遞增.于是u=-6時(shí),y取得最大值1163,故選C.5.已知x,y都在區(qū)間(-2,2)內(nèi),且xy=-1,則函數(shù)u=44-x2+99-y2的最小值是(A) 85 (B) 2411 (C) 127 (D) 125解:由x,y∈(-2,2),xy=-1知,x∈(-2,-12)∪(12,2),u=44-x2+9x29x2-1=-9x4+72x2-4-9x4+37x2-4=1+3537-(9x2+4x2).當(dāng)x∈(-2,-12)∪(12,2)時(shí),x2∈(14,4),此時(shí),9x2+4x2≥12.(當(dāng)且僅當(dāng)x2=23時(shí)等號(hào)成立).此時(shí)函數(shù)的最小值為125,故選D.6.在四面體ABCD中, 設(shè)AB=1,CD=3,直線AB與CD的距離為2,夾角為3,則四面體ABCD的體積等于 (A) 32 (B) 12 (C) 13 (D) 33解:如圖,把四面體補(bǔ)成平行六面體,則此平行六面體的體積=1×3×sinπ3×2=3.而四面體ABCD的體積=16×平行六面體體積=12.故選B.二.填空題(每小題9分,共54分)7.不等式x3-2x2-4x+3<0的解集是 .解:即x3-2x2-4x+3<0,(x-3)(x-5-12)(x+5+12)<0.x<-5+12,或5-12<x<3.∴ 解為(-3,-5-12)∪(5-12,3).8.設(shè)F1、F2是橢圓x29+y24=1的兩個(gè)焦點(diǎn),P是橢圓上一點(diǎn),且PF1∶PF2=2∶1,則△PF1F2的面積等于 .解:F1(-5,0),F(xiàn)2(5,0);F1F2=25. PF1+PF2=6,PF1=4,PF2=2.由于42+22=(25)2.故PF1F2是直角三角形55.∴ S=4.9.已知A={xx2-4x+3<0,x∈R},B={x21-x+a≤0,x2-2(a+7)x+5≤0,x∈R}若AB,則實(shí)數(shù)a的取值范圍是 .解:A=(1,3);又,a≤-21-x∈(-1,-14),當(dāng)x∈(1,3)時(shí),a≥x2+52x -7∈(5-7,-4).∴ -4≤a≤-1.10.已知a,b,c,d均為正整數(shù),且logab=32,logcd=54,若a-c=9,則b-d= 解:a3=b2,c5=d4,設(shè)a=x2,b=x3;c=y4,d=y5,x2-y4=9.(x+y2)(x-y2)=9.∴ x+y2=9,x-y2=1,x=5,y2=4.b-d=53-25=125-32=93.11.將八個(gè)半徑都為1的球分放兩層放置在一個(gè)圓柱內(nèi),并使得每個(gè)球都和其相鄰的四個(gè)球相切,且與圓柱的一個(gè)底面及側(cè)面都相切,則此圓柱的高等于 .解:如圖,ABCD是下層四個(gè)球的球心,EFGH是上層的四個(gè)球心.每個(gè)球心與其相切的球的球心距離=2.EFGH在平面ABCD上的射影是一個(gè)正方形.是把正方形ABCD繞其中心旋轉(zhuǎn)45而得.設(shè)E的射影為N,則N=2-1.E=3,故EN2=3-(2-1)2=22.∴ EN=48.所求圓柱的高=2+48.12. 設(shè)n={(十進(jìn)制)n位純小數(shù)0.-a1a2…anai只取0或1(i=1,2,…,n-1),an=1},Tn 是n中元素的個(gè)數(shù),Sn是n中所有元素的和,則lin→∞SnTn= .解:由于a1,a2,…,an-1中的每一個(gè)都可以取0與1兩個(gè)數(shù),Tn=2n-1.在每一位(從第一位到第n-1位)小數(shù)上,數(shù)字0與1各出現(xiàn)2n-2次.第n位則1出現(xiàn)2n-1次.∴ Sn=2n-20.11…1+2n-210-n.∴ lin→∞SnTn=1219=118.三、(本題滿分20分)13.設(shè)32≤x≤5,證明不等式 2x+1+2x-3+15-3x<219. 解:x+1≥0,2x-3≥0,15-3x≥0.32≤x≤5.由平均不等式x+1+x+1+2x-3+15-3x4≤x+1+x+1+2x-3+15-3x4≤14+x4.∴ 2x+1+2x-3+15-3x=x+1+x+1+2x-3+15-3x≤214+x. 但214+x在32≤x≤5時(shí)單調(diào)增.即214+x≤214+5=219. 故證.
四、(本題滿分20分)14.設(shè)A、B、C分別是復(fù)數(shù)Z0=ai,Z1=12+bi,Z2=1+ci(其中a,b,c都是實(shí)數(shù))對(duì)應(yīng)的不共線的三點(diǎn).證明:曲線 Z=Z0cos4t+2Z1cos2tsin2t+Z2sin4t (t∈R)與△ABC中平行于AC的中位線只有一個(gè)公共點(diǎn),并求出此點(diǎn).解:曲線方程為:Z=aicos4t+(1+2bi)cos2tsin2t+(1+ci)sin4t=(cos2tsin2t+sin4t)+i(acos4t+2bcos2tsin2t+csin4t)∴ x=cos2tsin2t+sin4t=sin2t(cos2t+sin2t)=sin2t.(0≤x≤1) y=acos4t+2bcos2tsin2t+csin4t=a(1-x)2+2b(1-x)x+cx2 即 y=(a-2b+c)x2+2(b-a)x+a (0≤x≤1). ① 若a-2b+c=0,則Z0、Z1、Z2三點(diǎn)共線,與已知矛盾,故a-2b+c0.于是此曲線為軸與x軸垂直的拋物線.AB中點(diǎn):14+12(a+b)i,BC中點(diǎn)N:34+12(b+c)i.與AC平行的中位線經(jīng)過(14,12(a+b))及N(34,12(b+c))兩點(diǎn),其方程為4(a-c)x+4y-3a-2b+c=0.(14≤x≤34). ②令 4(a-2b+c)x2+8(b-a)x+4a=4(c-a)x+3a+2b-c.即4(a-2b+c)x2+4(2b-a-c)x+a-2b+c=0.由a-2b+c0,得4x2+4x+1=0,此方程在[14,34]內(nèi)有惟一解: x=12.以x=12代入②得, y=14(a+2b+c).∴ 所求公共點(diǎn)坐標(biāo)為(12,14(a+2b+c)).五、(本題滿分20分)15.一張紙上畫有一個(gè)半徑為R的圓O和圓內(nèi)一個(gè)定點(diǎn)A,且OA=a,折疊紙片,使圓周上某一點(diǎn)A剛好與點(diǎn)A重合.這樣的每一種折法,都留下一條折痕.當(dāng)A取遍圓周上所有點(diǎn)時(shí),求所有折痕所在直線上點(diǎn)的集合.解:對(duì)于⊙O上任意一點(diǎn)A,連AA,作AA的垂直平分線N,連OA.交N于點(diǎn)P.顯然OP+PA=OA=R.由于點(diǎn)A在⊙O內(nèi),故OA=a<R.從而當(dāng)點(diǎn)A取遍圓周上所有點(diǎn)時(shí),點(diǎn)P的軌跡是以O(shè)、A為焦點(diǎn),OA=a為焦距,R(R>a)為長(zhǎng)軸的橢圓C.而N上任一異于P的點(diǎn)Q,都有OQ+QA=OQ+QA>OA.故點(diǎn)Q在橢圓C外.即折痕上所有的點(diǎn)都在橢圓C上及C外.反之,對(duì)于橢圓C上或外的一點(diǎn)S,以S為圓心,SA為半徑作圓,交⊙O于A,則S在AA的垂直平分線上,從而S在某條折痕上.最后證明所作⊙S與⊙O必相交.1 當(dāng)S在⊙O外時(shí),由于A在⊙O內(nèi),故⊙S與⊙O必相交;2 當(dāng)S在⊙O內(nèi)時(shí)(例如在⊙O內(nèi),但在橢圓C外或其上的點(diǎn)S),取過S的半徑OD,則由點(diǎn)S在橢圓C外,故OS+SA≥R(橢圓的長(zhǎng)軸).即SA≥SD.于是D在⊙S內(nèi)或上,即⊙S與⊙O必有交點(diǎn).于是上述證明成立.綜上可知,折痕上的點(diǎn)的集合為橢圓C上及C外的所有點(diǎn)的集合.
右腦記憶論壇 | 快速記憶法 | 記憶力培訓(xùn) | 速讀培訓(xùn) | 速讀軟件
Copyright(C) 2006-2014 逍遙右腦 All Rights Reserved