逍遙右腦記憶網(wǎng)-免費提供各種記憶力訓練學習方法!
超右腦
|
催眠術
|
潛能開發(fā)
|
影像閱讀
|
右腦開發(fā)訓練
|
網(wǎng)站地圖
記憶方法
右腦開發(fā)
快速閱讀
思維導圖
學習方法
學習計劃
作文大全
早期教育
勵志名言
右腦記憶
記憶法
|
記憶宮殿
|
記憶力訓練
記憶術
|
最強大腦
|
右腦記憶法
學習方法
高中學習方法
|
高考
|
小學資源
|
單詞記憶
初中學習方法
|
中考
|
教案設計
|
試題中心
潛能成功
吸引力法則
|
成功學
|
九型人格
注意力訓練
|
潛意識
|
思維模式
高中學習方法
高中語文
高中英語
高中數(shù)學
高中物理
高中化學
高中生物
高中政治
高中歷史
高中地理
高中教案
高中試題
高一學習方法
高一語文
高一數(shù)學
高一英語
高一物理
高一化學
高一生物
高一政治
高一歷史
高一地理
高一學習
高二學習方法
高二語文
高二數(shù)學
高二英語
高二物理
高二化學
高二生物
高二政治
高二歷史
高二地理
高二學習
高三學習方法
高三語文
高三數(shù)學
高三英語
高三物理
高三化學
高三生物
高三政治
高三歷史
高三地理
高三學習
逍遙右腦記憶
>
試題中心
>
數(shù)學
>
高一
>
高一數(shù)學2.2.2 對數(shù)函數(shù)及其性質(zhì)測試題(附答案)
編輯:
逍遙路
關鍵詞:
高一
來源:
高中學習網(wǎng)
1.(2010年高考天津卷)設a=log54,b=(log53)2,c=log45,則( )
A.a(chǎn)<c<b B.b<c<a
C.a(chǎn)<b<c D.b<a<c
解析:選D.a=log54<1,log53<log54<1,b=(log53)2<log53,c=log45>1,故b<a<c.
2.已知f(x)=logax-1在(0,1)上遞減,那么f(x)在(1,+∞)上( )
A.遞增無最大值 B.遞減無最小值
C.遞增有最大值 D.遞減有最小值
解析:選A.設y=logau,u=x-1.
x∈(0,1)時,u=x-1為減函數(shù),∴a>1.
∴x∈(1,+∞)時,u=x-1為增函數(shù),無最大值.
∴f(x)=loga(x-1)為增函數(shù),無最大值.
3.已知函數(shù)f(x)=ax+logax(a>0且a≠1)在[1,2]上的最大值與最小值之和為loga2+6,則a的值為( )
A.12 B.14
C.2 D.4
解析:選C.由題可知函數(shù)f(x)=ax+logax在[1,2]上是單調(diào)函數(shù),所以其最大值與最小值之和為f(1)+f(2)=a+loga1+a2+loga2=loga2+6,整理可得a2+a-6=0,解得a=2或a=-3(舍去),故a=2.
4.函數(shù)y=log13(-x2+4x+12)的單調(diào)遞減區(qū)間是________.
解析:y=log13u,u=-x2+4x+12.
令u=-x2+4x+12>0,得-2<x<6.
∴x∈(-2,2]時,u=-x2+4x+12為增函數(shù),
∴y=log13(-x2+4x+12)為減函數(shù).
答案:(-2,2]
1.若loga2<1,則實數(shù)a的取值范圍是( )
A.(1,2) B.(0,1)∪(2,+∞)
C.(0,1)∪(1,2) D.(0,12)
解析:選B.當a>1時,loga2<logaa,∴a>2;當0<a<1時,loga2<0成立,故選B.
2.若loga2<logb2<0,則下列結(jié)論正確的是( )
A.0<a<b<1 B.0<b<a<1
C.a(chǎn)>b>1 D.b>a>1
解析:選B.∵loga2<logb2<0,如圖所示,
∴0<b<a<1.
3.已知函數(shù)f(x)=2log12x的值域為[-1,1],則函數(shù)f(x)的定義域是( )
A.[22,2] B.[-1,1]
C.[12,2] D.(-∞,22]∪[2,+∞)
解析:選A.函數(shù)f(x)=2log12x在(0,+∞)上為減函數(shù),則-1≤2log12x≤1,可得-12≤log12x≤12,X k b 1 . c o
解得22≤x≤2.
4.若函數(shù)f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和為a,則a的值為( )
A.14 B.12
C.2 D.4
解析:選B.當a>1時,a+loga2+1=a,loga2=-1,a=12,與a>1矛盾;
當0<a<1時,1+a+loga2=a,
loga2=-1,a=12.
5.函數(shù)f(x)=loga[(a-1)x+1]在定義域上( )
A.是增函數(shù) B.是減函數(shù)
C.先增后減 D.先減后增
解析:選A.當a>1時,y=logat為增函數(shù),t=(a-1)x+1為增函數(shù),∴f(x)=loga[(a-1)x+1]為增函數(shù);當0<a<1時,y=logat為減函數(shù),t=(a-1)x+1為減函數(shù),
∴f(x)=loga[(a-1)x+1]為增函數(shù).
6.(2009年高考全國卷Ⅱ)設a=lge,b=(lg e)2,c=lg e,則( )
A.a(chǎn)>b>c B.a(chǎn)>c>b
C.c>a>b D.c>b>a
解析:選B.∵1<e<3,則1<e<e<e2<10,
∴0<lg e<1.則lg e=12lg e<lg e,即c<a.
∵0<lg e<1,∴(lg e)2<lg e,即b<a.
又c-b=12lg e-(lg e)2=12lg e(1-2lg e)
=12lg e•lg10e2>0,∴c>b,故選B.
7.已知0<a<1,0<b<1,如果alogb(x-3)<1,則x的取值范圍是________.
解析:∵0<a<1,alogb(x-3)<1,∴l(xiāng)ogb(x-3)>0.
又∵0<b<1,∴0<x-3<1,即3<x<4.
答案:3<x<4
8.f(x)=log21+xa-x的圖象關于原點對稱,則實數(shù)a的值為________.
解析:由圖象關于原點對稱可知函數(shù)為奇函數(shù),
所以f(-x)+f(x)=0,即
log21-xa+x+log21+xa-x=0⇒log21-x2a2-x2=0=log21,
所以1-x2a2-x2=1⇒a=1(負根舍去).
答案:1
9.函數(shù)y=logax在[2,+∞)上恒有y>1,則a取值范圍是________.
解析:若a>1,x∈[2,+∞),y=logax≥loga2,即loga2>1,∴1<a<2;若0<a<1,x∈[2,+∞),y=-logax≥-loga2,即-loga2>1,∴a>12,∴12<a<1.
答案:12<a<1或1<a<2
10.已知f(x)=6-ax-4ax<1logax x≥1是R上的增函數(shù),求a的取值范圍.
解:f(x)是R上的增函數(shù),
則當x≥1時,y=logax是增函數(shù),
∴a>1.
又當x<1時,函數(shù)y=(6-a)x-4a是增函數(shù).
∴6-a>0,∴a<6.
又(6-a)×1-4a≤loga1,得a≥65.
∴65≤a<6.
綜上所述,65≤a<6.
11.解下列不等式.
(1)log2(2x+3)>log2(5x-6);
(2)logx12>1.
解:(1)原不等式等價于2x+3>05x-6>02x+3>5x-6,
解得65<x<3,
所以原不等式的解集為(65,3).
(2)∵logx12>1⇔log212log2x>1⇔1+1log2x<0
⇔log2x+1log2x<0⇔-1<log2x<0
⇔2-1<x<20x>0⇔12<x<1.
∴原不等式的解集為(12,1).
12.函數(shù)f(x)=log12(3x2-ax+5)在[-1,+∞)上是減函數(shù),求實數(shù)a的取值范圍.
解:令t=3x2-ax+5,則y=log12t在[-1,+∞)上單調(diào)遞減,故t=3x2-ax+5在[-1,+∞)單調(diào)遞增,且t>0(即當x=-1時t>0).
因為t=3x2-ax+5的對稱軸為x=a6,所以a6≤-18+a>0⇒a≤-6a>-8⇒-8<a≤-6.
本文來自:逍遙右腦記憶 http://www.portlandfoamroofing.com/gaoyi/47322.html
相關閱讀:
2013年高一新生數(shù)學模底試題(含答案)
上一篇:
2012年高一數(shù)學下學期期末復習測試
下一篇:
高一數(shù)學必修二段考復習題
相關主題
2013年高一新生數(shù)學模底試題(含答案)
2014.1高一第一學期必修2數(shù)學期末檢測試題(含答案)
2013年高一數(shù)學第一學期必修1檢測試題(含答案)
蘇教版高一數(shù)學必修一全冊課時練習題(有答案)
臨渙中學2014級高一數(shù)學上冊第一次月考質(zhì)量檢測試卷(附答案)
安徽省安慶一中2014高一期末考試數(shù)學試題(必修4)
2014-2013學年高一上期數(shù)學期末試卷(含答案)
2014星源高一數(shù)學下冊三月份月考數(shù)學試卷(必修4)
2014-2014學年高一數(shù)學上冊10月月考試題(有答案)
2014-2014學年高一數(shù)學上冊期中調(diào)研考試試卷(有答案)
相關推薦
推薦閱讀
高一數(shù)學下冊鞏固性復習題(有答案)
高一數(shù)學鞏固性復習試卷(18) 一、 1、設0 (A) (B) (C) (D) 2、△ABC中,已知tanA……
2014-2014學年高一數(shù)學上冊第一次月考模
遼寧省東北育才學校2014-2014學年高一第一次月考數(shù)學試題 答題時間:120分鐘 滿分:150分 ……
高一數(shù)學上冊寒假練習題(帶答案)
高一數(shù)學寒假作業(yè)六 一.(每小題3分,共計30分) 1.圓心在 軸上,半徑為1,且過點(1,2)的圓……
2012年高一數(shù)學下學期期末復習測試
j 貴州省衡民中學2012年高一期末復習測試 (必修2 第一章 空間幾何體) (時間:120分鐘 滿分……
高一數(shù)學上冊第一次階段性考試試題(有答
瀏陽一中高一階段性測試數(shù)學卷 一、:(5*8=40分) 1、設集合M={xx2-x-12=0},N={xx2+……
相關閱讀
2012高一數(shù)學第二學期月考試卷及答案(必
2014-2014學年高一數(shù)學上冊10月月考試題(
函數(shù)模型的應用實例過關練習(含答案)
高一數(shù)學下冊周末訓練試題及答案
2014年高一數(shù)學上冊10月月考試題(含答案)
2014年高一上冊數(shù)學期末試卷(帶答案)
2014高一數(shù)學上冊寒假練習題(有答案)
2012年高一下冊數(shù)學暑假作業(yè)(教師版必修
雅安中學2013-2014年高一數(shù)學上冊期中試
高一數(shù)學上冊第一章課堂練習題(有答案)
右腦記憶論壇
|
快速記憶法
|
記憶力培訓
|
速讀培訓
|
速讀軟件
Copyright(C) 2006-2014
逍遙右腦
All Rights Reserved