逍遙右腦記憶網(wǎng)-免費(fèi)提供各種記憶力訓(xùn)練學(xué)習(xí)方法!
超右腦
|
催眠術(shù)
|
潛能開(kāi)發(fā)
|
影像閱讀
|
右腦開(kāi)發(fā)訓(xùn)練
|
網(wǎng)站地圖
記憶方法
右腦開(kāi)發(fā)
快速閱讀
思維導(dǎo)圖
學(xué)習(xí)方法
學(xué)習(xí)計(jì)劃
作文大全
早期教育
勵(lì)志名言
右腦記憶
記憶法
|
記憶宮殿
|
記憶力訓(xùn)練
記憶術(shù)
|
最強(qiáng)大腦
|
右腦記憶法
學(xué)習(xí)方法
高中學(xué)習(xí)方法
|
高考
|
小學(xué)資源
|
單詞記憶
初中學(xué)習(xí)方法
|
中考
|
教案設(shè)計(jì)
|
試題中心
潛能成功
吸引力法則
|
成功學(xué)
|
九型人格
注意力訓(xùn)練
|
潛意識(shí)
|
思維模式
高中學(xué)習(xí)方法
高中語(yǔ)文
高中英語(yǔ)
高中數(shù)學(xué)
高中物理
高中化學(xué)
高中生物
高中政治
高中歷史
高中地理
高中教案
高中試題
高一學(xué)習(xí)方法
高一語(yǔ)文
高一數(shù)學(xué)
高一英語(yǔ)
高一物理
高一化學(xué)
高一生物
高一政治
高一歷史
高一地理
高一學(xué)習(xí)
高二學(xué)習(xí)方法
高二語(yǔ)文
高二數(shù)學(xué)
高二英語(yǔ)
高二物理
高二化學(xué)
高二生物
高二政治
高二歷史
高二地理
高二學(xué)習(xí)
高三學(xué)習(xí)方法
高三語(yǔ)文
高三數(shù)學(xué)
高三英語(yǔ)
高三物理
高三化學(xué)
高三生物
高三政治
高三歷史
高三地理
高三學(xué)習(xí)
逍遙右腦記憶
>
教案設(shè)計(jì)
>
數(shù)學(xué)
>
高一
>
函數(shù)單調(diào)性的應(yīng)用
編輯:
逍遙路
關(guān)鍵詞:
高一
來(lái)源:
高中學(xué)習(xí)網(wǎng)
1.3.1函數(shù)單調(diào)性的應(yīng)用
一、內(nèi)容與解析
(一)內(nèi)容:函數(shù)單調(diào)性的應(yīng)用
(二)解析:本節(jié)課要學(xué)的內(nèi)容指的是會(huì)判定函數(shù)在某個(gè)區(qū)間上的單調(diào)性、會(huì)確定函數(shù)的單調(diào)區(qū)間、能證明函數(shù)的單調(diào)性,其關(guān)鍵是利用形式化的定義處理有關(guān)的單調(diào)性問(wèn)題,理解它關(guān)鍵就是要學(xué)會(huì)轉(zhuǎn)換式子 .學(xué)生已經(jīng)掌握了函數(shù)單調(diào)性的定義、代數(shù)式的變換、函數(shù)的概念等知識(shí),本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的應(yīng)用.的重點(diǎn)是應(yīng)用定義證明函數(shù)在某個(gè)區(qū)間上的單調(diào)性,解決重點(diǎn)的關(guān)鍵是嚴(yán)格按過(guò)程進(jìn)行證明。
二、目標(biāo)及解析
(一)教學(xué)目標(biāo):
掌握用定義證明函數(shù)單調(diào)性的步驟,會(huì)求函數(shù)的單調(diào)區(qū)間,提高應(yīng)用知識(shí)解決問(wèn)題的能力.
(二)解析:
會(huì)證明就是指會(huì)利用三步曲證明函數(shù)的單調(diào)性;會(huì)求函數(shù)的單調(diào)區(qū)間就是指會(huì)利用函數(shù)的圖象寫(xiě)出單調(diào)增區(qū)間或減區(qū)間;應(yīng)用知識(shí)解決問(wèn)題就是指能利用函數(shù)單調(diào)性的意義去求參變量的取值情況或轉(zhuǎn)化成熟悉的問(wèn)題。
三、問(wèn)題診斷分析
在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問(wèn)題是如何才能準(zhǔn)確確定 的符號(hào),產(chǎn)生這一問(wèn)題的原因是學(xué)生對(duì)代數(shù)式的恒等變換不熟練.要解決這一問(wèn)題,就是要根據(jù)學(xué)生的實(shí)際情況進(jìn)行知識(shí)補(bǔ)習(xí),特別是因式分解、二次根式中的分母有理化的補(bǔ)習(xí).
四、教學(xué)支持條件分析
在本節(jié)課()的教學(xué)中,準(zhǔn)備使用(),因?yàn)槭褂?),有利于().
五、教學(xué)過(guò)程
問(wèn)題1.用三種語(yǔ)言描述函數(shù)單調(diào)性的意義
問(wèn)題2.基本例題
例1如圖是定義在區(qū)間[-5,5]上的函數(shù)y=f(x),根據(jù)圖象說(shuō)出函數(shù)的單調(diào)區(qū)間,以及在每一單調(diào)區(qū)間上,它是增函數(shù)還是減函數(shù)?
活動(dòng):教師提示利用函數(shù)單調(diào)性的幾何意義.學(xué)生先思考或討論后再回答,教師點(diǎn)撥、提示并及時(shí)評(píng)價(jià)學(xué)生.圖象上升則在此區(qū)間上是增函數(shù),圖象下降則在此區(qū)間上是減函數(shù).
解:函數(shù)y=f(x)的單調(diào)區(qū)間是[-5,2),[-2,1),[1,3),[3,5].其中函數(shù)y=f(x)在區(qū)間[-5,2),[1,3)上是減函數(shù),在區(qū)間[-2,1),[3,5]上是增函數(shù).
點(diǎn)評(píng):本題主要考查函數(shù)單調(diào)性的幾何意義,以及圖象法判斷函數(shù)單調(diào)性.圖象法判斷函數(shù)的單調(diào)性適合于選擇題和填空題.如果解答題中給出了函數(shù)的圖象,通常用圖象法判斷單調(diào)性.
圖象法求函數(shù)單調(diào)區(qū)間的步驟是第一步:畫(huà)函數(shù)的圖象;第二步:觀察圖象,利用函數(shù)單調(diào)性的幾何意義寫(xiě)出單調(diào)區(qū)間.
變式訓(xùn)練
課本P32練習(xí)1、3.
例2物理學(xué)中的玻意耳定律p= (k為正常數(shù))告訴我們,對(duì)于一定量的氣體,當(dāng)其體積V減少時(shí),壓強(qiáng)p將增大.試用函數(shù)的單調(diào)性證明.
活動(dòng):學(xué)生先思考或討論,再到黑板上書(shū)寫(xiě).當(dāng)學(xué)生沒(méi)有證明思路時(shí),教師再提示,及時(shí)糾正學(xué)生解答過(guò)程出現(xiàn)的問(wèn)題,并標(biāo)出關(guān)鍵的地方,以便學(xué)生總結(jié)定義法的步驟.體積V減少時(shí),壓強(qiáng)p將增大是指函數(shù)p= 是減函數(shù);刻畫(huà)體積V減少時(shí),壓強(qiáng)p將增大的方法是用不等式表達(dá).已知函數(shù)的解析式判斷函數(shù)的單調(diào)性時(shí),常用單調(diào)性的定義來(lái)解決.
解:利用函數(shù)單調(diào)性的定義只要證明函數(shù)p= 在區(qū)間(0,+∞)上是減函數(shù)即可.
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性,以及定義法判斷函數(shù)的單調(diào)性.
定義法判斷或證明函數(shù)的單調(diào)性的步驟是第一步:在所給的區(qū)間上任取兩個(gè)自變量x1和x2,通常令x1
變式訓(xùn)練
課本P32練習(xí)4.
1.利用圖象法寫(xiě)出基本初等函數(shù)的單調(diào)性.
解:①正比例函數(shù):y=kx(k≠0)
當(dāng)k>0時(shí),函數(shù)y=kx在定義域R上是增函數(shù);當(dāng)k<0時(shí),函數(shù)y=kx在定義域R上是減函數(shù).
②反比例函數(shù):y= (k≠0)
當(dāng)k>0時(shí),函數(shù)y= 的單調(diào)遞減區(qū)間是(-∞,0),(0,+∞),不存在單調(diào)遞增區(qū)間;當(dāng)k<0時(shí),函數(shù)y= 的單調(diào)遞增區(qū)間是(-∞,0),(0,+∞),不存在單調(diào)遞減區(qū)間.
③一次函數(shù):y=kx+b(k≠0)
當(dāng)k>0時(shí),函數(shù)y=kx+b在定義域R上是增函數(shù);當(dāng)k<0時(shí),函數(shù)y=kx+b在定義域R上是減函數(shù).
④二次函數(shù):y=ax2+bx+c(a≠0)
當(dāng)a>0時(shí),函數(shù)y=ax2+bx+c的單調(diào)遞減區(qū)間是(-∞, ],單調(diào)遞增區(qū)間是[ ,+∞);
當(dāng)a<0時(shí),函數(shù)y=ax2+bx+c的單調(diào)遞減區(qū)間是[ ,+∞),單調(diào)遞增區(qū)間是(-∞, ].
點(diǎn)評(píng):以上基本初等函數(shù)的單調(diào)性作為結(jié)論記住,可以提高解題速度.
2.已知函數(shù)y=kx+2在R上是增函數(shù),求實(shí)數(shù)k的取值范圍.
答案:k∈(0,+∞).
3.二次函數(shù)f(x)=x2-2ax+m在(-∞,2)上是減函數(shù),在(2,+∞)上是增函數(shù),求實(shí)數(shù)a的值.
答案:a=2.
問(wèn)題3。能力型例題
例1(1)畫(huà)出已知函數(shù)f(x)=-x2+2x+3的圖象;
(2)證明函數(shù)f(x)=-x2+2x+3在區(qū)間 (-∞,1]上是增函數(shù);
(3)當(dāng)函數(shù)f(x)在區(qū)間(-∞,m]上是增函數(shù)時(shí),求實(shí)數(shù)m的取值范圍.
圖1-3-1-4
解:(1)函數(shù)f(x)=-x2+2x+3的圖象如圖1-3-1-4所示.
(2)設(shè)x1、x2∈(-∞,1],且x1
f(x1)-f(x2)=(-x12+2x1+3)-(-x22+2x2+3)
=(x22-x12)+2(x1-x2)
=(x1-x2)(2-x1-x2).
∵x1、x2∈(-∞,1],且x1
∴2-x1-x2>0.∴f(x1)-f(x2)<0.∴f(x1)
∴函數(shù)f(x)=-x2+2x+3在區(qū)間(-∞,1]上是增函數(shù).
(3)函數(shù)f(x)=-x2+2x+3的對(duì)稱(chēng)軸是直線x=1,在對(duì)稱(chēng)軸的左側(cè)是增函數(shù),那么當(dāng)區(qū)間(-∞,m]位于對(duì)稱(chēng)軸的左側(cè)時(shí)滿(mǎn)足題意,則有m≤1,即實(shí)數(shù)m的取值范圍是(-∞,1].
點(diǎn)評(píng):本題主要考查二次函數(shù)的圖象、函數(shù)的單調(diào)性及其應(yīng)用.討論有關(guān)二次函數(shù)的單調(diào)性問(wèn)題時(shí),常用數(shù)形結(jié)合的方法,結(jié)合二次函數(shù)圖象的特點(diǎn)來(lái)分析;二次函數(shù)在對(duì)稱(chēng)軸兩側(cè)的單調(diào)性相反;二次函數(shù)在區(qū)間D上是單調(diào)函數(shù),那么二次函數(shù)的對(duì)稱(chēng)軸不在區(qū)間D內(nèi).
判斷函數(shù)單調(diào)性時(shí),通常先畫(huà)出其圖象,由圖象觀察出單調(diào)區(qū)間,最后用單調(diào)性的定義證明.
判斷函數(shù)單調(diào)性的三部曲:
第一步,畫(huà)出函數(shù)的圖象,觀察圖象,描述函數(shù)值的變化趨勢(shì);
第二步,結(jié)合圖象來(lái)發(fā)現(xiàn)函數(shù)的單調(diào)區(qū)間;
第三步,用數(shù)學(xué)符號(hào)即函數(shù)單調(diào)性的定義來(lái)證明發(fā)現(xiàn)的結(jié)論.
函數(shù)的單調(diào)性是函數(shù)的一個(gè)重要性質(zhì),是高考的必考內(nèi)容之一.因此應(yīng)理解單調(diào)函數(shù)及其幾何意義,會(huì)根據(jù)定義判斷、證明函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間,能綜合運(yùn)用單調(diào)性解決一些問(wèn)題,會(huì)判斷復(fù)合函數(shù)的單調(diào)性.函數(shù)的單調(diào)性與函數(shù)的值域、不等式等知識(shí)聯(lián)系極為密切,是高考命題的熱點(diǎn)題型.
例2.已知函數(shù)f(x)是R上的增函數(shù),設(shè)F(x)=f(x)-f(a-x).用函數(shù)單調(diào)性定義證明F(x)是R上的增函數(shù);
活動(dòng):(1)本題中的函數(shù)解析式不明確即為抽象函數(shù),用定義法判斷單調(diào)性的步驟是要按格式書(shū)寫(xiě);解:(1)設(shè)x1、x2∈R,且x1
F(x1)-F(x2)=[f(x1)-f(a-x1)]-[f(x2)-f(a-x2)]
=[f(x1)-f(x2)]+[f(a-x2)-f(a-x1)].
又∵函數(shù)f(x)是R上的增函數(shù),x1
∴f(x1)
∴[f(x1)-f(x2)]+[f(a-x2)-f(a-x1)]<0.
∴F(x1)
知能訓(xùn)練
課本P32練習(xí)2.
例3.已知f(x)是定義在(0,+∞)上的減函數(shù),若f (a+1)
點(diǎn)評(píng):本題實(shí)質(zhì)是解不等式,但是這是一個(gè)不具體的不等式,是抽象不等式.解與函數(shù)有關(guān)的抽象不等式時(shí),常用的技巧是利用函數(shù)的單調(diào)性“剝掉外衣”,轉(zhuǎn)化為整式不等式.
拓展提升
例4.1. 畫(huà)出函數(shù)y= 的圖象,根據(jù)圖象指出單調(diào)區(qū)間.
2. 試分析函數(shù)y=x+ 的單調(diào)性.
六、課堂小結(jié)
本節(jié)學(xué)習(xí)了:①函數(shù)的單調(diào)性;②判斷函數(shù)單調(diào)性的方法:定義法和圖象法.
活動(dòng):學(xué)生先思考或討論,再回答.教師提示、點(diǎn)撥,及時(shí)評(píng)價(jià).
本文來(lái)自:逍遙右腦記憶 http://www.portlandfoamroofing.com/gaoyi/66250.html
相關(guān)閱讀:
函數(shù)概念的應(yīng)用
上一篇:
函數(shù)的值域
下一篇:
待定系數(shù)法
相關(guān)主題
函數(shù)概念的應(yīng)用
對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用
實(shí)際問(wèn)題的函數(shù)刻畫(huà)
常見(jiàn)的對(duì)數(shù)函數(shù)解題方法
3.4(3)函數(shù)的基本性質(zhì)
對(duì)數(shù)函數(shù)的概念及其性質(zhì)
簡(jiǎn)單的冪函數(shù)
對(duì)數(shù)函數(shù)的性質(zhì)及簡(jiǎn)單應(yīng)用
三角函數(shù)
映射函數(shù)定義域值域
相關(guān)推薦
推薦閱讀
指數(shù)函數(shù)的性質(zhì)的應(yīng)用
2.1.2指數(shù)函數(shù)的性質(zhì)的應(yīng)用 課前預(yù)習(xí)學(xué)案 一.預(yù)習(xí)目標(biāo) 能熟練說(shuō)出指數(shù)函數(shù)的定義及其性質(zhì)……
兩條直線的交點(diǎn)坐標(biāo)
3.3.1兩條直線的交點(diǎn)坐標(biāo) 一、學(xué)習(xí)目標(biāo): 知識(shí)與技能:會(huì)求兩直線的交點(diǎn)坐標(biāo),會(huì)判斷兩直線……
指數(shù)函數(shù)及其性質(zhì)
課題:§2.1.2指數(shù)函數(shù)及其性質(zhì) 任務(wù):(1)使學(xué)生了解指數(shù)函數(shù)模型的實(shí)際背景,認(rèn)識(shí)數(shù)學(xué)與……
函數(shù)單調(diào)性
泗縣三中教案、學(xué)案用紙 年級(jí)高一 學(xué)科數(shù)學(xué) 課題 函數(shù)的單調(diào)性(2) 授課時(shí)間 撰寫(xiě)人 劉報(bào) ……
直線的傾斜角和斜率
2、情感態(tài)度與價(jià)值觀:(1) 通過(guò)直線的傾斜角概念的引入學(xué)習(xí)和直線傾斜角與斜率關(guān)系的揭示,……
相關(guān)閱讀
用二分法求方程近似解
二次函數(shù)的最值
平面與平面平行的性質(zhì)
向量
向量的數(shù)乘
函數(shù)模型及其應(yīng)用
映射函數(shù)定義域值域
高一數(shù)學(xué)命題
高一數(shù)學(xué)橢圓的簡(jiǎn)單幾何性質(zhì)
空間線面關(guān)系
右腦記憶論壇
|
快速記憶法
|
記憶力培訓(xùn)
|
速讀培訓(xùn)
|
速讀軟件
Copyright(C) 2006-2014
逍遙右腦
All Rights Reserved