逍遙右腦記憶網(wǎng)-免費(fèi)提供各種記憶力訓(xùn)練學(xué)習(xí)方法!
超右腦
|
催眠術(shù)
|
潛能開(kāi)發(fā)
|
影像閱讀
|
右腦開(kāi)發(fā)訓(xùn)練
|
網(wǎng)站地圖
記憶方法
右腦開(kāi)發(fā)
快速閱讀
思維導(dǎo)圖
學(xué)習(xí)方法
學(xué)習(xí)計(jì)劃
作文大全
早期教育
勵(lì)志名言
右腦記憶
記憶法
|
記憶宮殿
|
記憶力訓(xùn)練
記憶術(shù)
|
最強(qiáng)大腦
|
右腦記憶法
學(xué)習(xí)方法
高中學(xué)習(xí)方法
|
高考
|
小學(xué)資源
|
單詞記憶
初中學(xué)習(xí)方法
|
中考
|
教案設(shè)計(jì)
|
試題中心
潛能成功
吸引力法則
|
成功學(xué)
|
九型人格
注意力訓(xùn)練
|
潛意識(shí)
|
思維模式
高中學(xué)習(xí)方法
高中語(yǔ)文
高中英語(yǔ)
高中數(shù)學(xué)
高中物理
高中化學(xué)
高中生物
高中政治
高中歷史
高中地理
高中教案
高中試題
高一學(xué)習(xí)方法
高一語(yǔ)文
高一數(shù)學(xué)
高一英語(yǔ)
高一物理
高一化學(xué)
高一生物
高一政治
高一歷史
高一地理
高一學(xué)習(xí)
高二學(xué)習(xí)方法
高二語(yǔ)文
高二數(shù)學(xué)
高二英語(yǔ)
高二物理
高二化學(xué)
高二生物
高二政治
高二歷史
高二地理
高二學(xué)習(xí)
高三學(xué)習(xí)方法
高三語(yǔ)文
高三數(shù)學(xué)
高三英語(yǔ)
高三物理
高三化學(xué)
高三生物
高三政治
高三歷史
高三地理
高三學(xué)習(xí)
逍遙右腦記憶
>
教案設(shè)計(jì)
>
數(shù)學(xué)
>
高三
>
2012屆高考理科數(shù)學(xué)第一輪幾何證明總復(fù)習(xí)教案
編輯:
逍遙路
關(guān)鍵詞:
高三
來(lái)源:
高中學(xué)習(xí)網(wǎng)
第十六章 幾何證明選講
高考導(dǎo)航
考試要求重難點(diǎn)擊命題展望
1.了解平行線(xiàn)截割定理.
2.會(huì)證明并應(yīng)用直角三角形射影定理.
3.會(huì)證明并應(yīng)用圓周角定理,圓的切線(xiàn)的判定定理及性質(zhì)定理,并會(huì)運(yùn)用它們進(jìn)行計(jì)算與證明.
4.會(huì)證明并應(yīng)用相交弦定理、圓內(nèi)接四 邊形的性質(zhì)定理與判定定理、切割線(xiàn)定理,并會(huì)運(yùn)用它們進(jìn)行幾何計(jì)算與證明.
5.了解平行投影的含義,通過(guò)圓柱與平面的位置關(guān)系了解平行投影;會(huì)證明平面與圓柱面的截線(xiàn)是橢圓(特殊情形是圓).
6.了解下面的定理.
定理:在空間中,取直線(xiàn)l為軸,直線(xiàn)l′與l相交于點(diǎn)O,其夾角為α,l′圍繞l旋轉(zhuǎn)得到以O(shè)為頂點(diǎn),l′為母線(xiàn)的圓錐面,任取平面π,若它與軸l的交角為β(π與l平行,記β=0),則:
①β>α,平面π與圓錐的交線(xiàn)為橢圓;
②β=α,平面π與圓錐的交線(xiàn)為拋物線(xiàn);
③β<α,平面π與圓錐的交線(xiàn)為雙曲線(xiàn).
7.會(huì)利用丹迪林(Dandelin)雙 球(如圖所示,這兩個(gè)球位于圓錐的內(nèi)部,一個(gè)位于平面π的上方,一個(gè)位于平面π的下方,并且與平面π及圓錐面均相切,其切點(diǎn)分別為F,E)證明上述定理①的情形:
當(dāng)β>α?xí)r,平面π與圓錐的交線(xiàn)為橢圓.
(圖中,上、下兩球與圓錐面相切的切點(diǎn)分別為點(diǎn)B和點(diǎn)C,線(xiàn)段BC與平面π相交于點(diǎn)A)
8.會(huì)證明以下結(jié)果:
①在7.中,一個(gè)丹迪林球與圓 錐面的交線(xiàn)為一個(gè)圓,并與圓錐的底面平行.記這個(gè)圓所在的平面為π′.
②如果平面π與平面π′的交線(xiàn)為m,在6.①中橢圓上任取點(diǎn)A,該丹迪林球與平面π的切點(diǎn)為F,則點(diǎn)A到點(diǎn)F的距離與點(diǎn) A到直線(xiàn)m的距離比是小于1的常數(shù)e(稱(chēng)點(diǎn)F為這個(gè)橢圓的焦點(diǎn),直線(xiàn)m為橢圓的準(zhǔn)線(xiàn),常數(shù)e為離心率).
9.了解定理6.③中的證明,了解當(dāng)β無(wú)限接近α?xí)r,平面π的極限結(jié)果. 本章重點(diǎn):相似三角形的判定與性質(zhì),與圓有關(guān)的若干定理及其運(yùn)用,并將其運(yùn)用到立體幾何中.
本章難點(diǎn):對(duì)平面截圓柱、圓錐所得的曲線(xiàn)為圓、橢圓、雙曲線(xiàn)、拋物線(xiàn)的證明途徑與方法,它是解立體幾何、平面幾何知識(shí)的綜合運(yùn)用,應(yīng)較好地把握.
本專(zhuān)題強(qiáng)調(diào)利用演繹推理證明結(jié)論,通過(guò)推理證明進(jìn)一步發(fā)展學(xué)生的邏輯推理能力,進(jìn)一步提高空間想象能力、幾何直觀能力和綜合運(yùn)用幾何方法解決問(wèn)題的能力.
第一講與第二講是傳統(tǒng)內(nèi)容,高考中主要考查平行線(xiàn)截割定理、直角三角形射影定理以及與圓有關(guān)的性質(zhì)和判定,考查邏輯推理能力.第三講內(nèi)容是新增內(nèi)容,在新課程高考下,要求很低,只作了解.
知識(shí)網(wǎng)絡(luò)
16.1 相似三角形的判定及有關(guān)性質(zhì)
典例精析
題型一 相似三角形的判定與性質(zhì)
【例1】 如圖,已知在△ABC中,D是BC邊的中點(diǎn),且AD=AC,DE⊥BC,DE與AB相交于點(diǎn)E,EC與AD相交于點(diǎn)F.
(1)求證:△ABC∽△FCD;
(2)若S△FCD=5,BC=10,求DE的長(zhǎng).
【解析】(1)因?yàn)镈E⊥BC,D是BC的中點(diǎn),所以EB=EC,所以∠B=∠1.
又因?yàn)锳D=AC,所以∠2=∠ACB.所以△ABC∽△FCD.
(2)過(guò)點(diǎn)A作AM⊥BC,垂足為點(diǎn)M.因?yàn)椤鰽BC∽△FCD,BC=2CD,所以S△ABCS△FCD=(BCCD)2=4,又因?yàn)镾△FCD=5,所以S△ABC=20.因?yàn)镾△ABC=12BC?AM,BC=10,所以20=12×10×AM,所以AM=4.又因?yàn)镈E∥AM,所以DEAM=BDBM,因?yàn)镈M=12DC=52,BM=BD+DM,BD=12BC=5,所以DE4=55+52,所以DE=83.
【變式訓(xùn)練1】如右圖,在△ABC中,AB=14 cm,ADBD=59,DE∥BC,CD⊥AB,CD=12 cm.求△ADE的面積和周長(zhǎng).
【解析】由AB=14 cm,CD=12 cm,CD⊥AB,得S△ABC=84 cm2.
再由DE∥BC可得△ABC∽△ADE.由S△ADES△ABC=(ADAB)2可求得S△ADE=757 c m2.利用勾股定理求出BC,AC,再由相似三角 形性質(zhì)可得△ADE的周長(zhǎng)為15 cm.
題型二 探求幾何結(jié)論
【例2】如圖,在梯形ABCD中,點(diǎn)E,F(xiàn)分別在AB,CD上,EF∥AD,假設(shè)EF做上下平行移動(dòng).
(1)若AEEB=12,求證:3EF=BC+2AD;
(2)若AEEB=23,試判斷EF與BC,AD之間的關(guān)系,并說(shuō)明理由;
(3)請(qǐng)你探究一般結(jié)論,即若AEEB=mn,那么你可以得到什么結(jié)論?
【解析】 過(guò)點(diǎn)A作AH∥CD分別交EF,BC于點(diǎn)G、H.
(1)因?yàn)锳EEB=12,所以AEAB=13,
又EG∥BH,所以EGBH=AEAB=13,即3EG=BH,
又EG+GF=EG+AD=EF,從而EF=13(BC-HC)+AD,
所以EF=13BC+23AD,即3EF=BC+2AD.
(2)EF與BC,AD的關(guān)系式為5EF=2BC+3AD,理由和(1)類(lèi)似.
(3)因?yàn)锳EEB=mn,所以AEAB=mm+n,
又EG∥BH,所以EGBH=AEAB,即EG=mm+nBH.
EF=EG+GF=EG+AD=mm+n(BC-AD)+AD,
所以EF=mm+nBC+nm+nAD,
即(m+n)EF=mBC+nAD.
【點(diǎn)撥】 在相似三角形中,平行輔助線(xiàn)是常作的輔助線(xiàn)之一;探求幾何結(jié)論可按特殊到一般的思路去獲取,但結(jié)論證明應(yīng)從特殊情況得到啟迪.
【變式訓(xùn)練2】如右圖,正方形ABCD的邊長(zhǎng)為1,P是CD邊上中點(diǎn),點(diǎn)Q在線(xiàn)段BC上,設(shè)BQ=k,是否存在這樣的實(shí)數(shù)k,使得以Q,C,P為頂點(diǎn)的三角形與△ADP相似?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
【解析】設(shè)存在滿(mǎn)足條件的實(shí)數(shù)k,
則在正方形ABCD中,∠D=∠C=90°,
由Rt△ADP∽R(shí)t△QCP或Rt△ADP∽R(shí)t△PCQ得ADQC=DPCP或ADPC=DPCQ,
由此解得CQ=1或CQ=14.
從而k=0或k=34.
題型三 解決線(xiàn)的位置或數(shù)量關(guān)系
【例3】(2009江蘇)如圖,在四邊形ABCD中,△ABC △BAD,求證:AB∥CD.
【證明】 由△ABC≌△BAD得∠ACB=∠BDA,所以A、B、C、D四點(diǎn)共圓,
所以∠CAB=∠CDB.
再由△ABC≌△BAD得∠CAB=∠DBA,
所以∠DBA=∠CDB,即AB∥CD.
【變式訓(xùn)練3】如圖,AA1與BB1相交于點(diǎn)O,AB∥A1B1且AB=12A1B1,△AOB的外接圓的直徑為1,則△A1OB1的外接圓的直徑為 .
【解析】因?yàn)锳B∥A1B1且AB=12A1B1,所以△AOB∽△A1OB1
因?yàn)閮扇切瓮饨訄A的直徑之比等于相似比.
所以△A1OB1的外接圓直徑為2.
總結(jié)提高
1.相似三角形的判定與性質(zhì)這一內(nèi)容是平面幾何知識(shí)的重要組成部分,是解題的工具,同時(shí)它的內(nèi)容滲透了等價(jià)轉(zhuǎn)化、從一般到特殊、分類(lèi)討論等重要的數(shù)學(xué)思想與方法,在學(xué)習(xí)時(shí)應(yīng)以它們?yōu)橹笇?dǎo).相似三角形的證法有:定義法、平行法、判定定理法以及直角三角形的HL法.
相似三角形的性質(zhì)主要有對(duì)應(yīng)線(xiàn)的比值相等(邊長(zhǎng)、高線(xiàn)、中線(xiàn)、周長(zhǎng)、內(nèi)切圓半徑等),對(duì)應(yīng)角相等,面積的比等于相似比的平方.
2.“平行出相似”“平行成比例”,故此章中平行輔助線(xiàn)是常作的輔助線(xiàn)之一,遇到困難時(shí)應(yīng)常考慮此類(lèi)輔助線(xiàn).
16.2 直線(xiàn)與圓的位置關(guān)系和圓錐曲線(xiàn)的性質(zhì)
典例精析
題型一 切線(xiàn)的判定和性質(zhì)的運(yùn)用
【例1】如圖,AB是⊙O的直徑,AC是弦,∠BAC的平分線(xiàn)AD交⊙O于點(diǎn)D,DE⊥AC,交AC的延長(zhǎng)線(xiàn)于點(diǎn)E,OE交AD于點(diǎn)F.
(1)求證:DE是⊙O的切線(xiàn);
(2) 若ACAB=25,求AFDF的值.
【解析】(1)證明:連接OD,可得∠ODA=∠OAD=∠DAC,
所以O(shè)D∥AE,又AE⊥DE,所以DE⊥OD,
又OD為半徑,所以DE是⊙O的切線(xiàn).
(2)過(guò)D作DH⊥AB于H,則有∠DOH=∠CAB,
OHOD=cos∠DOH=cos∠CAB=ACAB=25,
設(shè)OD=5x,則AB=10x,OH=2x,所以AH=7x.
由△AED≌△AHD可得AE=AH=7x,
又由△AEF∽△DOF可得AF∶DF=AE∶OD=75,
所以AFDF=75.
【變式訓(xùn)練1】已知在直角三角形ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點(diǎn)D,連接DO并延長(zhǎng)交AC的延長(zhǎng)線(xiàn)于點(diǎn)E,⊙O的切線(xiàn)DF交AC于點(diǎn)F.
(1)求證:AF=CF;
(2)若ED=4,sin∠E=35,求CE的長(zhǎng).
【解析】(1)方法一:設(shè)線(xiàn)段FD延長(zhǎng)線(xiàn)上一點(diǎn)G,則∠GDB=∠ADF,且∠GDB+∠BDO=π2,所以∠ADF+∠BDO=π2,又因?yàn)樵凇袿中OD=OB,∠BDO=∠OBD,所以∠ADF+∠OBD=π2.
在Rt△ABC中,∠A+∠CBA=π2,所以∠A=∠ADF,所以AF=FD.
又在Rt△ABC中,直角邊BC為⊙O的直徑,所以AC為⊙O的切線(xiàn),
又FD為⊙O的切線(xiàn),所以FD=CF.
所以AF=CF.
方法二:在直角三角形ABC中,直角邊BC為⊙O的直徑,所以AC為⊙O的切線(xiàn),
又FD為⊙O的切線(xiàn),所以FD=CF,且∠FDC=∠FCD.
又由BC為⊙O的直徑可知,∠ADF+∠FDC=π2,∠A+∠FCD=π2,
所以∠ADF=∠A,所以FD=AF.
所以AF=CF.
(2)因?yàn)樵谥苯侨切蜦ED中,ED=4,sin∠E=35,所以cos∠E=45,所以FE=5.
又FD=3=FC,所以CE=2.
題型二 圓中有關(guān)定理的綜合應(yīng)用
【例2】如圖所示,已知⊙O1與⊙O2相交于A、B兩點(diǎn),過(guò)點(diǎn)A作⊙O 1的切線(xiàn)交⊙O2于點(diǎn)C,過(guò)點(diǎn)B作兩圓的割線(xiàn),分別交⊙O1、⊙O2于點(diǎn)D、E,DE與AC相交于點(diǎn)P.
( 1)求證:AD∥EC;
( 2)若AD是⊙O2的切線(xiàn),且PA=6,PC=2,BD=9,求AD的長(zhǎng).
【解析】(1)連接AB,因?yàn)锳C是⊙O1的切線(xiàn),所以∠BAC=∠D,
又因?yàn)椤螧AC=∠E,所以∠D=∠E,所以AD∥EC.
(2)方法一:因?yàn)镻A是⊙O1的切線(xiàn),PD是⊙O1的割線(xiàn),
所以PA2=PB?PD,所以62=PB?(PB+9),所以PB=3.
在⊙O2 中,由相交弦定理得PA?PC=BP?PE,所以PE=4.
因?yàn)锳D是⊙O2的切線(xiàn),DE是⊙O2的割線(xiàn),
所以AD2=DB?DE=9×16,所以AD=12.
方法二:設(shè)BP=x, PE=y(tǒng).
因?yàn)镻A=6,PC=2,所以由相交弦定理得PA?PC=BP?PE,即xy=12.①
因?yàn)锳D∥EC,所以DPPE=APPC,所以9+xy=62.②
由①②可得 或 (舍去),所以DE=9+x+y=16.
因?yàn)锳D是⊙O2的切線(xiàn),DE是⊙O2的割線(xiàn),所以AD2=DB?DE=9×16,所以AD=12.
【變式訓(xùn)練2】如圖,⊙O的直徑AB的延長(zhǎng)線(xiàn)與弦CD的延長(zhǎng)線(xiàn)相交于點(diǎn)P,E為⊙O上一點(diǎn), ,DE交AB于點(diǎn)F,且AB=2BP=4.
(1)求PF的長(zhǎng)度;
(2)若圓F與圓O內(nèi)切,直線(xiàn)PT與圓F切于點(diǎn)T,求線(xiàn)段PT的長(zhǎng)度.
【解析】(1)連接OC,OD,OE,由同弧對(duì)應(yīng)的圓周角與圓心角之間的關(guān)系,結(jié)合題中已知條件可得∠CDE=∠AOC.
又∠CDE=∠P+∠PFD,∠AOC=∠P+∠OCP,
從而∠PFD=∠OCP,故△PFD∽△PCO,所以PFPC=PDPO.
由割線(xiàn)定理知PC?PD=PA?PB=12,故PF= =124=3.
(2)若圓F與圓O內(nèi)切,設(shè)圓F的半徑為r,
因?yàn)镺F=2-r=1,即r=1,
所以O(shè)B是 圓F的直徑,且過(guò)點(diǎn)P的圓F的切線(xiàn)為PT,
則PT2=PB?PO=2×4=8,即PT=22.
題型三 四點(diǎn)共圓問(wèn)題
【例3】如圖,圓O與圓P相交于A、B兩點(diǎn),圓心P在圓O上,圓O的弦BC切圓P于點(diǎn)B,CP及其延長(zhǎng)線(xiàn)交圓P于D,E兩點(diǎn),過(guò)點(diǎn)E作EF⊥CE,交CB的延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)求證:B、P、E、F四點(diǎn)共圓;
(2)若CD=2,CB=22,求出由B、P、E、F四點(diǎn)所確定的圓的直徑.
【解析】(1)證明:連接PB.因?yàn)锽C切圓P于點(diǎn)B,所以PB⊥BC.
又因?yàn)镋F⊥CE,所以∠PBF+∠PEF=180°,所以∠EPB+∠EFB=180°,
所以B,P,E,F(xiàn)四點(diǎn)共圓.
(2)因?yàn)锽,P,E,F(xiàn)四點(diǎn)共圓,且EF⊥CE,PB⊥BC,所以此圓的直徑就是PF.
因?yàn)锽C切圓P于點(diǎn)B,且CD=2,CB=22,
所以由切割線(xiàn)定理CB2=CD?CE,得CE=4,DE=2,BP=1.
又因?yàn)镽t△CBP∽R(shí)t△CEF,所以EF∶PB=CE∶CB,得EF=2.
在Rt△FEP中,PF=PE2+EF2=3,
即由B,P,E,F(xiàn)四點(diǎn)確定的圓的直徑為3.
【變式訓(xùn)練3】如圖,△ABC是直角三角形,∠ABC=90°.以AB為直徑的圓O交AC于點(diǎn)E,點(diǎn)D是BC邊的中點(diǎn).連接OD交圓O于點(diǎn)M.求證:
(1)O,B,D,E四點(diǎn)共圓;
(2)2DE2=DM?AC+DM?AB.
【證明】(1)連接BE,則BE⊥EC.
又D是BC的中點(diǎn),所以DE=BD.
又OE=OB,OD=OD,所以△ODE≌△ODB,
所以∠OBD=∠OED=90°,所以D,E,O,B四點(diǎn)共圓.
(2)延長(zhǎng)DO交圓O于點(diǎn)H.
因?yàn)镈E2=DM?DH=DM?(DO+OH)=DM?DO+DM?OH=DM?(12AC)+DM?(12AB),
所以2DE2=DM?AC+DM?AB.
總結(jié)提高
1.直線(xiàn)與圓的位置關(guān)系是一種重要的幾何關(guān)系.
本章在初中平面幾何的基礎(chǔ)上加以深化,使平面幾何知識(shí)趨于完善,同時(shí)為解析幾何、立體幾何提供了多個(gè)理論依據(jù).
本文來(lái)自:逍遙右腦記憶 http://www.portlandfoamroofing.com/gaosan/55475.html
相關(guān)閱讀:
2012屆高考數(shù)學(xué)第一輪導(dǎo)學(xué)案復(fù)習(xí):二次函數(shù)
上一篇:
2012屆高考數(shù)學(xué)知識(shí)函數(shù)的奇偶性歸納復(fù)習(xí)教案
下一篇:
2012屆高考數(shù)學(xué)第二輪備考復(fù)習(xí) 散型隨機(jī)變量的概率分布
相關(guān)主題
2012屆高考數(shù)學(xué)第一輪導(dǎo)學(xué)案復(fù)習(xí):二次函數(shù)
2012屆高考數(shù)學(xué)第一輪知識(shí)點(diǎn)不等式專(zhuān)項(xiàng)復(fù)習(xí)
2012屆高考數(shù)學(xué)第二輪不等式備考復(fù)習(xí)
2012屆高考數(shù)學(xué)第一輪三角函數(shù)的基本概念導(dǎo)學(xué)案復(fù)習(xí)
2012屆高考數(shù)學(xué)第一輪備考推理與證明復(fù)習(xí)教案
2012屆高考數(shù)學(xué)難點(diǎn)突破復(fù)習(xí) 集合及其應(yīng)用部分
2012屆高考數(shù)學(xué)第一輪橢圓導(dǎo)學(xué)案復(fù)習(xí)
2012屆高考數(shù)學(xué)備考復(fù)習(xí)三角函數(shù)、三角變換、解三角形、平面向量
2012屆高考數(shù)學(xué)第一輪立體幾何專(zhuān)項(xiàng)復(fù)習(xí) 習(xí)題課
2012屆高考理科數(shù)學(xué)第一輪總復(fù)習(xí) 立體幾何
相關(guān)推薦
推薦閱讀
2012屆高考數(shù)學(xué)第一輪導(dǎo)學(xué)案復(fù)習(xí) 函數(shù)的
高三數(shù)學(xué)理科復(fù)習(xí)43——函數(shù)的單調(diào)性、極值與最值 【高考要求】求函數(shù)的單調(diào)區(qū)間、函數(shù)在開(kāi)……
2012屆高考數(shù)學(xué)函數(shù)的單調(diào)性與最值知識(shí)歸
3.函數(shù)的單調(diào)性與最值 一、知識(shí)梳理: 1、函數(shù)的單調(diào)性 (1) 函數(shù)的單調(diào)區(qū)間必須在定義域……
2012屆高考數(shù)學(xué)知識(shí)復(fù)習(xí)二次函數(shù)講義
第6課 二次函數(shù) 【考點(diǎn)導(dǎo)讀】 1.理解二次函數(shù)的概念,掌握二次函數(shù)的圖像和性質(zhì); 2.能結(jié)合……
不等式的解法
6.5 不等式的解法(二) ●知識(shí)梳理 1.x>a x>a或x<-a(a>0); x<a -a<x<a(a>0……
2012屆高考數(shù)學(xué)考點(diǎn)函數(shù)及其表示法提綱專(zhuān)
2011-2012學(xué)年高三數(shù)學(xué)復(fù)習(xí)導(dǎo)學(xué)案 1.函數(shù)及其表示法 導(dǎo)學(xué)提綱 1、你知道本節(jié)考綱的具體要求……
相關(guān)閱讀
2012屆高考理科數(shù)學(xué)第二輪復(fù)習(xí)平面向量教
2012屆高考數(shù)學(xué)導(dǎo)數(shù)的概念、性質(zhì)與運(yùn)算知
2012屆高考理科數(shù)學(xué)第一輪總復(fù)習(xí) 推理與
2012屆高考數(shù)學(xué)第一輪導(dǎo)學(xué)案復(fù)習(xí):函數(shù)的
2012屆高考數(shù)學(xué)第一輪立體幾何專(zhuān)項(xiàng)復(fù)習(xí)
2012屆高考數(shù)學(xué)第一輪知識(shí)點(diǎn)二個(gè)基本原理
2012屆高考數(shù)學(xué)知識(shí)直線(xiàn)和圓的方程復(fù)習(xí)講
高中數(shù)學(xué)競(jìng)賽標(biāo)準(zhǔn)教材(第十一章圓錐曲線(xiàn))
2012屆高考數(shù)學(xué)算法初步、復(fù)數(shù)備考復(fù)習(xí)教
2012屆高考數(shù)學(xué)第二輪備考復(fù)習(xí) 散型隨機(jī)
右腦記憶論壇
|
快速記憶法
|
記憶力培訓(xùn)
|
速讀培訓(xùn)
|
速讀軟件
Copyright(C) 2006-2014
逍遙右腦
All Rights Reserved