逍遙右腦記憶網(wǎng)-免費(fèi)提供各種記憶力訓(xùn)練學(xué)習(xí)方法!
超右腦
|
催眠術(shù)
|
潛能開發(fā)
|
影像閱讀
|
右腦開發(fā)訓(xùn)練
|
網(wǎng)站地圖
記憶方法
右腦開發(fā)
快速閱讀
思維導(dǎo)圖
學(xué)習(xí)方法
學(xué)習(xí)計(jì)劃
作文大全
早期教育
勵(lì)志名言
右腦記憶
記憶法
|
記憶宮殿
|
記憶力訓(xùn)練
記憶術(shù)
|
最強(qiáng)大腦
|
右腦記憶法
學(xué)習(xí)方法
高中學(xué)習(xí)方法
|
高考
|
小學(xué)資源
|
單詞記憶
初中學(xué)習(xí)方法
|
中考
|
教案設(shè)計(jì)
|
試題中心
潛能成功
吸引力法則
|
成功學(xué)
|
九型人格
注意力訓(xùn)練
|
潛意識(shí)
|
思維模式
高中學(xué)習(xí)方法
高中語文
高中英語
高中數(shù)學(xué)
高中物理
高中化學(xué)
高中生物
高中政治
高中歷史
高中地理
高中教案
高中試題
高一學(xué)習(xí)方法
高一語文
高一數(shù)學(xué)
高一英語
高一物理
高一化學(xué)
高一生物
高一政治
高一歷史
高一地理
高一學(xué)習(xí)
高二學(xué)習(xí)方法
高二語文
高二數(shù)學(xué)
高二英語
高二物理
高二化學(xué)
高二生物
高二政治
高二歷史
高二地理
高二學(xué)習(xí)
高三學(xué)習(xí)方法
高三語文
高三數(shù)學(xué)
高三英語
高三物理
高三化學(xué)
高三生物
高三政治
高三歷史
高三地理
高三學(xué)習(xí)
逍遙右腦記憶
>
教案設(shè)計(jì)
>
數(shù)學(xué)
>
高三
>
2012屆高考數(shù)學(xué)知識(shí)直線和圓的方程復(fù)習(xí)講義
編輯:
逍遙路
關(guān)鍵詞:
高三
來源:
高中學(xué)習(xí)網(wǎng)
M
高中數(shù)學(xué)復(fù)習(xí)講義 第八章 直線和圓的方程
【知識(shí)圖解】
【方法點(diǎn)撥】
1.掌握直線的傾斜角,斜率以及直線方程的各種形式,能正確地判斷兩直線位置關(guān)系,并能熟練地利用距離公式解決有關(guān)問題.注意直線方程各種形式應(yīng)用的條件.了解二元一次不等式表示的平面區(qū)域,能解決一些簡單的線性規(guī)劃問題.
2.掌握關(guān)于點(diǎn)對(duì)稱及關(guān)于直線對(duì)稱的問題討論方法,并能夠熟練運(yùn)用對(duì)稱性來解決問題.
3.熟練運(yùn)用待定系數(shù)法求圓的方程.
4.處理解析幾何問題時(shí),主要表現(xiàn)在兩個(gè)方面:(1)根據(jù)圖形的性質(zhì),建立與之等價(jià)的代數(shù)結(jié)構(gòu);(2)根據(jù)方程的代數(shù)特征洞察并揭示圖形的性質(zhì).
5.要重視坐標(biāo)法,學(xué)會(huì)如何借助于坐標(biāo)系,用代數(shù)方法研究幾何問題,體會(huì)這種方法所體現(xiàn)的數(shù)形結(jié)合思想.
6.要善于綜合運(yùn)用初中幾何有關(guān)直線和圓的知識(shí)解決本章問題;還要注意綜合運(yùn)用三角函數(shù)、平面向量等與本章內(nèi)容關(guān)系比較密切的知識(shí).
第1課 直線的方程
【考點(diǎn)導(dǎo)讀】
理解直線傾斜角、斜率的概念,掌握過兩點(diǎn)的直線的斜率公式,掌握直線方程的幾種形式,能根據(jù)條件,求出直線的方程.
高考中主要考查直線的斜率、截距、直線相對(duì)坐標(biāo)系位置確定和求在不同條件下的直線方程,屬中、低檔題,多以填空題和選擇題出現(xiàn),每年必考.
【基礎(chǔ)練習(xí)】
1.直線xcosα+ y+2=0的傾斜角范圍是
2.過點(diǎn) ,且在兩坐標(biāo)軸上的截距互為相反數(shù)的直線方程是
3.直線l經(jīng)過點(diǎn)(3,-1),且與兩坐標(biāo)軸圍成一個(gè)等腰直角三角形,則直線l的方程為
4.無論 取任何實(shí)數(shù),直線 必經(jīng)過一定點(diǎn)P,則P的坐標(biāo)為(2,2)
【范例導(dǎo)析】
例1.已知兩點(diǎn)A(-1,2)、B(m,3)
(1)求直線AB的斜率k;
(2)求直線AB的方程;
(3)已知實(shí)數(shù)m ,求直線AB的傾斜角α的取值范圍.
分析:運(yùn)用兩點(diǎn)連線的子斜率公式解決,要注意斜率不存在的情況.
解:(1)當(dāng)m=-1時(shí),直線AB的斜率不存在.
當(dāng)m≠-1時(shí), ,
(2)當(dāng)m=-1時(shí),AB:x=-1,
當(dāng)m≠1時(shí),AB: .
(3)①當(dāng)m=-1時(shí), ;
②當(dāng)m≠-1時(shí),
∵
∴
故綜合①、②得,直線AB的傾斜角
點(diǎn)撥:本題容易忽視對(duì)分母等于0和斜率不存在情況的討論.
例2.直線l過點(diǎn)P(2,1),且分別交x軸、y軸的正半軸于點(diǎn)A、B、O為坐標(biāo)原點(diǎn).
(1)當(dāng)△AOB的面積最小時(shí),求直線l的方程;
(2)當(dāng)PA?PB取最小值時(shí),求直線l的方程.
分析: 引進(jìn)合適的變量,建立相應(yīng)的目標(biāo)函數(shù),通過尋找函數(shù)最值的取得條件來求l的方程.
解 (1)設(shè)直線l的方程為y-1=k(x-2),則點(diǎn)A(2- ,0),B(0,1-2k),且2- >0, 1-2k>0,即k<0.
△AOB的面積S= (1-2k)(2- )= [(-4k)+ +4]≥4,當(dāng)-4k= ,即k= 時(shí), △AOB的面積有最小值4,則所求直線方程是x+2y-4=0.
(2)解法一:由題設(shè),可令直線方程l為y-1=k(x-2).
分別令y=0和x=0,得A(2- ,0),B(0,1-2k),
∴PA?PB= ,當(dāng)且僅當(dāng)k2=1,即k=±1時(shí), PA?PB取得最小值4.又k<0, ∴k=-1,這是直線l的方程是x+y-3=0.
解法二:如下圖,設(shè)∠BAO=θ,由題意得θ∈(0, ),且PA?PB=
當(dāng)且僅當(dāng)θ= 時(shí), PA?PB取得最小值4,此時(shí)直線l的斜率為-1, 直線l的方程是x+y-3=0.
點(diǎn)評(píng) ①求直線方程的基本方法包括利用條件直接求直線的基本量和利用待定系數(shù)法求直線的基本量.②在研究最值問題時(shí),可以從幾何圖形開始,找到取最值時(shí)的情形,也可以從代數(shù)角度出發(fā),構(gòu)建目標(biāo)函數(shù),利用函數(shù)的單調(diào)性或基本不等式等知識(shí)來求最值.
例3.直線l被兩條直線l1:4x+y+3=0和l2:3x-5y-5=0截得的線段中點(diǎn)為P(-1,2).求直線l的方程.
分析 本題關(guān)鍵是如何使用好中點(diǎn)坐標(biāo),對(duì)問題進(jìn)行適當(dāng)轉(zhuǎn)化.
解:解法一 設(shè)直線l交l1于A(a,b),則點(diǎn)(-2-a,4-b)必在l2,所以有
,解得
直線l過A(-2,5),P(-1,2),它的方程是3x+y+1=0.
解法二 由已知可設(shè)直線l與l1的交點(diǎn)為A(-1+m,2+n),則直線l與l2的交點(diǎn)為B(-1-m,2-n),且l的斜率k= ,∵A,B兩點(diǎn)分別l1和l2上,∴ ,消去常數(shù)項(xiàng)得-3m=n,所以k=-3,
從而直線l的方程為3x+y+1=0.
解法三 設(shè)l1、l2與l的交點(diǎn)分別為A,B,則l1關(guān)于點(diǎn)P(-1,2)對(duì)稱的直線m過點(diǎn)B,利用對(duì)稱關(guān)系可求得m的方程為4x+y+1=0,因?yàn)橹本l過點(diǎn)B,故直線l的方程可設(shè)為3x-5y-5+λ(4x+y+1)=0.由于直線l點(diǎn)P(-1,2),所以可求得λ=-18,從而l的方程為3x-5y-5-18(4x+y+1)=0,即3x+y+1=0.
點(diǎn)評(píng) 本題主要復(fù)習(xí)有關(guān)線段中點(diǎn)的幾種解法,本題也可以先設(shè)直線方程,然后求交點(diǎn),再根據(jù)中點(diǎn)坐標(biāo)求出直線l的斜率,但這種解法思路清晰,計(jì)算量大,解法一和解法二靈活運(yùn)用中點(diǎn)坐標(biāo)公式,使計(jì)算簡化,對(duì)解法二還可以用來求已知中點(diǎn)坐標(biāo)的圓錐曲線的弦所在直線方程,解法三是利用直線系方程求解,對(duì)學(xué)生的思維層次要求較高。
【反饋練習(xí)】
1.已知下列四個(gè)命題①經(jīng)過定點(diǎn)P0(x0,y0)的直線都可以用方程y-y0=k(x-x0)表示;②經(jīng)過任意兩個(gè)不同點(diǎn)P1(x1,y1)、P2(x2,y2)的直線都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示;③不經(jīng)過原點(diǎn)的直線都可以用方程 + =1表示;④經(jīng)過定點(diǎn)A(0,b)的直線都可以用方程y=kx+b表示,其中正確的是①③④
2.設(shè)直線l的方程為 ,當(dāng)直線l的斜率為-1時(shí),k值為__5__,當(dāng)直線l 在x軸、y軸上截距之和等于0時(shí),k值為1或3
3.設(shè)直線 ax+by+c=0的傾斜角為 ,且sin +cos =0,則a,b滿足的關(guān)系式為
4.若直線l:y=kx 與直線2x+3y-6=0的交點(diǎn)位于第一象限,則直線l的傾斜角的取值范圍是
5.若直線4x-3y-12=0被兩坐標(biāo)軸截得的線段長為 ,則c的值為
6.若直線(m2─1)x─y─2m+1=0不經(jīng)過第一象限,則實(shí)數(shù)m的取值范圍是
7.已知兩直線a1x+b1y+1=0和a2x+b2y+1=0的交點(diǎn)為P(2,3),求過兩點(diǎn)Q1(a1,b1)、Q2(a2,b2)(a1≠a2)的直線方程
分析:利用點(diǎn)斜式或直線與方程的概念進(jìn)行解答
解:∵P(2,3)在已知直線上,∴ 2a1+3b1+1=0,2a2+3b2+1=0
∴2(a1-a2)+3(b1-b2)=0,即 =- ∴所求直線方程為y-b1=- (x-a1)
∴2x+3y-(2a1+3b1)=0,即2x+3y+1=0
點(diǎn)撥:1.由已知求斜率; 2.運(yùn)用了整體代入的思想,方法巧妙.
8.一條直線經(jīng)過點(diǎn)P(3,2),并且分別滿足下列條件,求直線方程:
(1)傾斜角是直線x-4y+3=0的傾斜角的2倍;
(2)與x、y軸的正半軸交于A、B兩點(diǎn),且△AOB的面積最小(O為坐標(biāo)原點(diǎn))
解:(1)設(shè)所求直線傾斜角為θ,已知直線的傾斜角為α,則θ=2α,且tanα= ,tanθ=tan2α= ,
從而方程為8x-15y+6=0
(2)設(shè)直線方程為 + =1,a>0,b>0,
代入P(3,2),得 + =1≥2 ,得ab≥24,
從而S△AOB= ab≥12,
此時(shí) = ,∴k=- =-
點(diǎn)撥:此題(2)也可以轉(zhuǎn)化成關(guān)于a或b的一元函數(shù)后再求其最小值
第2課 兩條直線的位置關(guān)系
【考點(diǎn)導(dǎo)讀】
1.掌握兩條直線平行與垂直的條件,能根據(jù)直線方程判定兩條直線的位置關(guān)系,會(huì)求兩條相交直線的交點(diǎn),掌握點(diǎn)到直線的距離公式及兩平行線間距離公式.
2.高考數(shù)學(xué)卷重點(diǎn)考察兩直線平行與垂直的判定和點(diǎn)到直線的距離公式的運(yùn)用,有時(shí)考察單一知識(shí)點(diǎn),有時(shí)也和函數(shù)三角不等式等結(jié)合,題目難度中等偏易.
【基礎(chǔ)練習(xí)】
1.已知過點(diǎn)A(-2,m)和B(m,4)的直線與直線2x+y-1=0平行,則m的值為-8
2.過點(diǎn)(-1,3)且垂直于直線x-2y+3=0的直線方程為2x+y-1=0
3.若三條直線 和 相交于一點(diǎn),則k的值等于 .
【范例導(dǎo)析】
例1.已知兩條直線 :x+m2y+6=0, :(m-2)x+3my+2m=0,當(dāng)m為何值時(shí), 與
(1)相交;(2)平行;(3)重合?
分析:利用垂直、平行的充要條件解決.
解:當(dāng)m=0時(shí), :x+6=0, :x=0,∴ ∥ ,
當(dāng)m=2時(shí), :x+4y+6=0, :3y+2=0
∴ 與 相交;
當(dāng)m≠0且m≠2時(shí),由 得m=-1或m=3,由 得m=3
故(1)當(dāng)m≠-1且m≠3且m≠0時(shí) 與 相交。
(2)m=-1或m=0時(shí) ∥ ,
(3)當(dāng)m=3時(shí) 與 重合。
點(diǎn)撥:判斷兩條直線平行或垂直時(shí),不要忘了考慮兩條直線斜率是否存在.
例2.已知直線 經(jīng)過點(diǎn)P(3,1),且被兩平行直線 :x+y+1=0和 :x+y+6=0截得的線段之長為5。求直線 的方程。
分析:可以求出直線 與兩平行線的交點(diǎn)坐標(biāo),運(yùn)用兩點(diǎn)距離公式求出直線斜率
解法一::若直線 的斜率不存在,則直線 的方程為x=3,此時(shí)與 、 的交點(diǎn)分別是A1(3,-4)和
B1(3,-9),截得的線段AB的長AB=-4+9=5,符合題意。若直線 的斜率存在,則設(shè) 的方程為y=k(x-3)+1,
解方程組 得A( - )
解方程組 得B( ,- )
由AB=5得
+ =25,
解之,得k=0,即所求的直線方程為y=1。
綜上可知,所求 的方程為x=3或y=1。
解法二.設(shè)直線 與 、 分別相交于A(x1,y1)、B(x2,y2),則x1+y1+1=0,
x2+y2+6=0。兩式相減,得(x1-x2)+(y1-y2)=5 ①
又(x1-x2)2+(y1-y2)2=25 ②
聯(lián)立① ②,可得 或
由上可知,直線 的傾斜角為0°或90°,又由直線 過點(diǎn)P(3,1),故所求 的方程為x=3或y=1。
點(diǎn)撥:用待定系數(shù)法求直線方程時(shí),要注意對(duì)斜率不存在的情況的討論.
【反饋練習(xí)】
1.已知直線 在 軸上的截距為1,且垂直于直線 ,則 的方程是
2.若直線 與 互相垂直,則 -3或1
3.若直線l1:ax+2y+6=0與直線l2:x+(a-1)y+(a2-1)=0平行,則a的值是___-1___.
4.已知 ,且點(diǎn) 到直線 的距離等于 ,則 等于
5. 經(jīng)過直線 與 的交點(diǎn),且平行于直線 的直線方程是3x+6y-2=0
6.線 過點(diǎn) , 過點(diǎn) , ∥ ,且 與 之間的距離等于5,求 與 的方程。
解: 與 的方程分別為:12x-5y-60=0,12x-5y+5=0或x=5,x=0
7.已知!ABC的三邊方程分別為AB: ,BC: ,CA: .
求:(1)AB邊上的高所在直線的方程;(2)∠BAC的內(nèi)角平分線所在直線的方程.
解:(1)AB邊上的高斜率為 且過點(diǎn)C,解方程組 得點(diǎn)C( ,2)所以AB邊上的高方程為 .
(2)設(shè)P 為∠BAC的內(nèi)角平分線上任意一點(diǎn),則 解得 或 ,由圖形知 即為所求.
第3課 圓的方程
【考點(diǎn)導(dǎo)讀】
1.掌握?qǐng)A的標(biāo)準(zhǔn)方程與一般方程,能根據(jù)問題的條件選擇適當(dāng)?shù)男问角髨A的方程;理解圓的標(biāo)準(zhǔn)方程與一般方程之間的關(guān)系,會(huì)進(jìn)行互化。
2.本節(jié)內(nèi)容主要考查利用待定系數(shù)法求圓的方程,利用三角換元或數(shù)形結(jié)合求最值問題,題型難度以容易題和中檔題為主.
【基礎(chǔ)練習(xí)】
1.已知點(diǎn)A(3,-2),B(-5,4),以線段AB為直徑的圓的方程為(x + 1)2 + (y-1)2 = 25
2.過點(diǎn)A(1,-1)、B(-1,1)且圓心在直線x+y-2=0上的圓的方程是(x-1)2+(y-1)2=4
3.已知圓C的半徑為2,圓心在 軸的正半軸上,直線 與圓C相切,則圓C的方程為
4.圓 與y軸交于A、B兩點(diǎn),圓心為P,若∠APB=120°,則實(shí)數(shù)c值為_-11__
5.如果方程 所表示的曲線關(guān)于直線 對(duì)稱,那么必有__D=E__
【范例導(dǎo)析】
【例1】設(shè)方程 ,若該方程表示一個(gè)圓,求m的取值范圍及這時(shí)圓心的軌跡方程。
分析:配成圓的標(biāo)準(zhǔn)方程再求解
解:配方得: 該方程表示圓,則有 ,得 ,此時(shí)圓心的軌跡方程為 ,消去m,得 ,由 得x=m+3 所求的軌跡方程是 ,
注意:方程表示圓的充要條件,求軌跡方程時(shí),一定要討論變量的取值范圍,如題中
變式1:方程 表示圓,求實(shí)數(shù)a的取值范圍,并求出其中半徑最小的圓的方程。
解:原方程可化為
當(dāng)a 時(shí),原方程表示圓。
又
當(dāng) ,所以半徑最小的圓方程為
例2 求半徑為4,與圓 相切,且和直線 相切的圓的方程.
分析:根據(jù)問題的特征,宜用圓的標(biāo)準(zhǔn)方程求解.
解:則題意,設(shè)所求圓的方程為圓 .
圓 與直線 相切,且半徑為4,則圓心 的坐標(biāo)為 或 .
又已知圓 的圓心 的坐標(biāo)為 ,半徑為3.
若兩圓相切,則 或 .
(1)當(dāng) 時(shí), ,或 (無解),故可得 .
∴所求圓方程為 ,或 .
(2)當(dāng) 時(shí), ,或 (無解),故 .
∴所求圓的方程為 ,或 .
【反饋練習(xí)】
1.關(guān)于x,y的方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示一個(gè)圓的充要條件是B=0且A=C≠0,D2+E2-4AF>0
2.過點(diǎn)P(-8,-1),Q(5,12),R(17,4)三點(diǎn)的圓的圓心坐標(biāo)是(5,-1)
3.若兩直線y=x+2k與y=2x+k+1的交點(diǎn)P在圓x2+y2=4的內(nèi)部,則k的范圍是
4.已知圓心為點(diǎn)(2,-3),一條直徑的兩個(gè)端點(diǎn)恰好落在兩個(gè)坐標(biāo)軸上,則這個(gè)圓的方程是
5.直線y=3x+1與曲線x2+y2=4相交于A、B兩點(diǎn),則AB的中點(diǎn)坐標(biāo)是
6.方程 表示的曲線是_兩個(gè)半圓
7.圓 關(guān)于直線 的對(duì)稱圓的方程是
8.如果實(shí)數(shù)x、y滿足等式 ,那么 的最大值是
9.已知點(diǎn) 和圓 ,求一束光線從點(diǎn)A經(jīng)x軸反射到圓周C的最短路程為___8___
10.求經(jīng)過點(diǎn)A(5,2),B(3,2),圓心在直線2x─y─3=0上的圓的方程;
解:設(shè)圓心P(x0,y0),則有 ,
解得 x0=4, y0=5,
∴半徑r= ,
∴所求圓的方程為(x─4)2+(y─5)2=10
11. 一圓與y軸相切,圓心在直線x-3y=0上,且直線y=x截圓所得弦長為2 ,求此圓的方程
解:因圓與y軸相切,且圓心在直線x-3y=0上,
故設(shè)圓方程為
又因?yàn)橹本y=x截圓得弦長為2 ,
則有 + =9b2,
解得b=±1 故所求圓方程為
或
點(diǎn)撥:(1)確定圓方程首先明確是標(biāo)準(zhǔn)方程還是一般方程;(2)待定系數(shù)法;(3)盡量利用幾何關(guān)系求a、b、r或D、E、F.
第4課 直線與圓的位置關(guān)系
【考點(diǎn)導(dǎo)讀】
能利用代數(shù)方法和幾何方法判定直線與圓的位置關(guān)系;熟練運(yùn)用圓的有關(guān)性質(zhì)解決直線與圓、圓與圓的綜合問題,運(yùn)用空間直角坐標(biāo)系刻畫點(diǎn)的位置,了解空間中兩點(diǎn)間的距離公式及其簡單應(yīng)用.
【基礎(chǔ)練習(xí)】
1.若直線4x-3y-2=0與圓x2+y2-2ax+4y+a2-12=0總有兩個(gè)不同交點(diǎn),則a的取值范圍是-6<a<4
2.直線x-y+4=0被圓x2+y2+4x-4y+6=0截得的弦長等于
3.過點(diǎn)P(2,1)且與圓x2+y2-2x+2y+1=0相切的直線的方程為 x=2或3x-4y-2=0 .
【范例導(dǎo)析】
例1.已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R).
(1)證明:不論m取什么實(shí)數(shù),直線l與圓恒交于兩點(diǎn);
(2)求直線被圓C截得的弦長最小時(shí)l的方程.
分析:直線過定點(diǎn),而該定點(diǎn)在圓內(nèi),此題便可解得.
(1)證明:l的方程(x+y-4)+m(2x+y-7)=0.
由 得 即l恒過定點(diǎn)A(3,1).
∵圓心C(1,2),|AC|= <5(半徑), ∴點(diǎn)A在圓C內(nèi),從而直線l恒與圓C相交于兩點(diǎn).
(2)解:弦長最小時(shí),l⊥AC,由kAC=- , ∴l(xiāng)的方程為2x-y-5=0.
點(diǎn)撥:直線與圓相交截得弦長的最小值時(shí),可以從垂徑定理角度考慮,充分利用圓的幾何性質(zhì).
例2.已知圓O: ,圓C: ,由兩圓外一點(diǎn) 引兩圓切線PA、PB,切點(diǎn)分別為A、B,滿足PA=PB.求實(shí)數(shù)a、b間滿足的等量關(guān)系.
解:連結(jié)PO、PC,∵PA=PB,OA=CB=1
∴PO2=PC2,從而
化簡得實(shí)數(shù)a、b間滿足的等量關(guān)系為: .
例3.已知圓C與兩坐標(biāo)軸都相切,圓心C到直線 的距離等于 .
求圓C的方程.
解:設(shè)圓C半徑為 ,由已知得: ∴ ,或
∴圓C方程為 .
例4.如圖,在平面直角坐標(biāo)系xOy中,平行于x軸且過點(diǎn)A(33,2)的入射光線l1被直線l:y=33x反射.反射光線l2交y軸于B點(diǎn),圓C過點(diǎn)A且與l1, l2都相切.
(1)求l2所在直線的方程和圓C的方程;
(2)設(shè)P,Q分別是直線l和圓C上的動(dòng)點(diǎn),求PB+PQ的最小值及此時(shí)點(diǎn)P的坐標(biāo).
解:(1)直線 設(shè) .
的傾斜角為 , 反射光線 所在的直線方程為
. 即 .
已知圓C與 ,
圓心C在過點(diǎn)D且與 垂直的直線上, ,又圓心C在過點(diǎn)A且與 垂直的直線上, , ,圓C的半徑r=3,
故所求圓C的方程為 .
(2)設(shè)點(diǎn) 關(guān)于 的對(duì)稱點(diǎn) ,則 ,得 ,固定點(diǎn)Q可發(fā)現(xiàn),當(dāng) 共線時(shí), 最小,
故 的最小值為 .此時(shí)由 ,得 .
【反饋練習(xí)】
1.圓x2+y2-4x=0在點(diǎn)P(1, )處的切線方程為
2.已知直線 過點(diǎn) ,當(dāng)直線 與圓 有兩個(gè)交點(diǎn)時(shí),其斜率k的取值范圍是
3.設(shè)m>0,則直線 (x+y)+1+m=0與圓x2+y2=m的位置關(guān)系為相切或相離
解析:圓心到直線的距離為d= ,圓半徑為 .
∵d-r= - = (m-2 +1)= ( -1)2≥0,∴直線與圓的位置關(guān)系是相切或相離.
4.圓(x-3)2+(y-3)2=9上到直線3x+4y-11=0的距離等于1的點(diǎn)有個(gè)數(shù)為3
5.點(diǎn)P從(1,0)出發(fā),沿單位圓 逆時(shí)針方向運(yùn)動(dòng) 弧長到達(dá)Q點(diǎn),則Q的坐標(biāo)為
6.若圓 與直線 相切,且其圓心在 軸的左側(cè),則 的值為
7.設(shè)P為圓 上的動(dòng)點(diǎn),則點(diǎn)P到直線 的距離的最小值為 1 .
8.已知平面區(qū)域 恰好被面積最小的圓 及其內(nèi)
部所覆蓋.
(1)試求圓 的方程.
(2)若斜率為1的直線 與圓C交于不同兩點(diǎn) 滿足 ,求直線 的方程.
解:(1)由題意知此平面區(qū)域表示的是以 構(gòu)成的三角形及其內(nèi)部,且△ 是直角三角形, 所以覆蓋它的且面積最小的圓是其外接圓,故圓心是(2,1),半徑是 ,所以圓 的方程是 .
(2)設(shè)直線 的方程是: .
因?yàn)?,
所以圓心 到直線 的距離是 ,
即
解得: .所以直線 的方程是: .
本文來自:逍遙右腦記憶 http://www.portlandfoamroofing.com/gaosan/62204.html
相關(guān)閱讀:
2012屆高考數(shù)學(xué)第一輪導(dǎo)學(xué)案復(fù)習(xí):二次函數(shù)
上一篇:
2012屆高考數(shù)學(xué)第一輪導(dǎo)學(xué)案復(fù)習(xí):對(duì)數(shù)函數(shù)
下一篇:
2012屆高考數(shù)學(xué)第一輪備考推理與證明復(fù)習(xí)教案
相關(guān)主題
2012屆高考數(shù)學(xué)第一輪導(dǎo)學(xué)案復(fù)習(xí):二次函數(shù)
2012屆高考數(shù)學(xué)第一輪知識(shí)點(diǎn)不等式專項(xiàng)復(fù)習(xí)
2012屆高考數(shù)學(xué)第二輪不等式備考復(fù)習(xí)
2012屆高考數(shù)學(xué)第一輪三角函數(shù)的基本概念導(dǎo)學(xué)案復(fù)習(xí)
2012屆高考數(shù)學(xué)第一輪備考推理與證明復(fù)習(xí)教案
2012屆高考數(shù)學(xué)難點(diǎn)突破復(fù)習(xí) 集合及其應(yīng)用部分
2012屆高考數(shù)學(xué)第一輪橢圓導(dǎo)學(xué)案復(fù)習(xí)
2012屆高考數(shù)學(xué)備考復(fù)習(xí)三角函數(shù)、三角變換、解三角形、平面向量
2012屆高考數(shù)學(xué)第一輪立體幾何專項(xiàng)復(fù)習(xí) 習(xí)題課
2012屆高考理科數(shù)學(xué)第一輪總復(fù)習(xí) 立體幾何
相關(guān)推薦
推薦閱讀
高三數(shù)學(xué)解析幾何綜合問題
j.Co M 高考數(shù)學(xué)專題復(fù)習(xí) 解析幾何綜合問題 一.高考要求 解析幾何歷來是高考的重要內(nèi)容之……
2012年文科數(shù)學(xué)回歸教材 3導(dǎo)數(shù) 教學(xué)資料
新標(biāo)——回歸教材 導(dǎo)數(shù) 1.導(dǎo)數(shù)的背景:(1)切線的斜率;(2)瞬時(shí)速度. 典例:一物體的運(yùn)動(dòng)方程是……
2012屆高考數(shù)學(xué)指數(shù)式與對(duì)數(shù)式知識(shí)梳理復(fù)
教案24 指數(shù)式與對(duì)數(shù)式(2) 一、前檢測(cè) 1.已知 ,則 答案:12 2. 已知 ,那么 等于( C )……
2012屆高考數(shù)學(xué)難點(diǎn)突破復(fù)習(xí) 函數(shù)的單調(diào)
函數(shù)的專題復(fù)習(xí)-函數(shù)的單調(diào)性 高考命題規(guī)律 內(nèi)容上,主要考查求函數(shù)的單調(diào)區(qū)間或應(yīng)用單調(diào)……
不等式的綜合性質(zhì)
教材:不等式、不等式的綜合性質(zhì) 目的:首先讓學(xué)生掌握不等式的一個(gè)等價(jià)關(guān)系,了解并會(huì)證明……
相關(guān)閱讀
2012屆高考數(shù)學(xué)知識(shí)要點(diǎn)互斥事件有一個(gè)發(fā)
2012文科數(shù)學(xué)回歸教材 4三角函數(shù) 教學(xué)資
高中數(shù)學(xué)競賽標(biāo)準(zhǔn)教材(第十一章圓錐曲線)
高三理科數(shù)學(xué)復(fù)數(shù)總復(fù)習(xí)教學(xué)案
高三理科數(shù)學(xué)排列組合總復(fù)習(xí)教學(xué)案
2012屆高考數(shù)學(xué)難點(diǎn)突破復(fù)習(xí) 概念、方法
2012屆高考數(shù)學(xué)函數(shù)模型及其應(yīng)用知識(shí)歸納
2012屆高考數(shù)學(xué)難點(diǎn)突破復(fù)習(xí) 函數(shù)值域及
第六章三角函數(shù)(高中數(shù)學(xué)競賽標(biāo)準(zhǔn)教材)
2012屆高考數(shù)學(xué)第一輪導(dǎo)學(xué)案復(fù)習(xí):指數(shù)函
右腦記憶論壇
|
快速記憶法
|
記憶力培訓(xùn)
|
速讀培訓(xùn)
|
速讀軟件
Copyright(C) 2006-2014
逍遙右腦
All Rights Reserved