逍遙右腦記憶網(wǎng)-免費(fèi)提供各種記憶力訓(xùn)練學(xué)習(xí)方法!
超右腦
|
催眠術(shù)
|
潛能開發(fā)
|
影像閱讀
|
右腦開發(fā)訓(xùn)練
|
網(wǎng)站地圖
記憶方法
右腦開發(fā)
快速閱讀
思維導(dǎo)圖
學(xué)習(xí)方法
學(xué)習(xí)計(jì)劃
作文大全
早期教育
勵(lì)志名言
右腦記憶
記憶法
|
記憶宮殿
|
記憶力訓(xùn)練
記憶術(shù)
|
最強(qiáng)大腦
|
右腦記憶法
學(xué)習(xí)方法
高中學(xué)習(xí)方法
|
高考
|
小學(xué)資源
|
單詞記憶
初中學(xué)習(xí)方法
|
中考
|
教案設(shè)計(jì)
|
試題中心
潛能成功
吸引力法則
|
成功學(xué)
|
九型人格
注意力訓(xùn)練
|
潛意識
|
思維模式
高中學(xué)習(xí)方法
高中語文
高中英語
高中數(shù)學(xué)
高中物理
高中化學(xué)
高中生物
高中政治
高中歷史
高中地理
高中教案
高中試題
高一學(xué)習(xí)方法
高一語文
高一數(shù)學(xué)
高一英語
高一物理
高一化學(xué)
高一生物
高一政治
高一歷史
高一地理
高一學(xué)習(xí)
高二學(xué)習(xí)方法
高二語文
高二數(shù)學(xué)
高二英語
高二物理
高二化學(xué)
高二生物
高二政治
高二歷史
高二地理
高二學(xué)習(xí)
高三學(xué)習(xí)方法
高三語文
高三數(shù)學(xué)
高三英語
高三物理
高三化學(xué)
高三生物
高三政治
高三歷史
高三地理
高三學(xué)習(xí)
逍遙右腦記憶
>
教案設(shè)計(jì)
>
數(shù)學(xué)
>
高一
>
對數(shù)函數(shù)的概念與圖象
編輯:
逍遙路
關(guān)鍵詞:
高一
來源:
高中學(xué)習(xí)網(wǎng)
一、內(nèi)容與解析
(一)內(nèi)容:對數(shù)函數(shù)的概念與圖象
(二)解析:本節(jié)課要學(xué)的內(nèi)容是什么是對數(shù)函數(shù),對數(shù)函數(shù)的圖象形狀及畫法,其核心是對數(shù)函數(shù)的圖象畫法,理解它關(guān)鍵就是要理解掌握對數(shù)函數(shù)的圖象特點(diǎn).學(xué)生已經(jīng)掌握了指數(shù)函數(shù)的圖象畫法及特點(diǎn),函數(shù)圖象的一般畫法,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的發(fā)展.由于它是研究對數(shù)函數(shù)性質(zhì)的依據(jù),是本學(xué)科的核心內(nèi)容.的重點(diǎn)是對數(shù)函數(shù)的圖象特點(diǎn)與畫法,解決重點(diǎn)的關(guān)鍵是利用函數(shù)圖象的一般畫法畫出具體對數(shù)函數(shù)的圖象,從而歸納出對數(shù)函數(shù)的圖象特點(diǎn),再根據(jù)圖象特點(diǎn)確定對數(shù)函數(shù)的一般畫法。
二、目標(biāo)及解析
(一)教學(xué)目標(biāo):
1,理解對數(shù)函數(shù)的概念;掌握對數(shù)函數(shù)的圖象的特點(diǎn)及畫法。
2,通過具體實(shí)例,直觀感受對數(shù)函數(shù)模型所刻畫的數(shù)量關(guān)系;通過具體的函數(shù)圖象的畫法逐步認(rèn)識對數(shù)函數(shù)的特征;
3,培養(yǎng)學(xué)生運(yùn)用類比方法探索研究數(shù)學(xué)問題的素養(yǎng),提高學(xué)生分析問題、解決問題的能力。
(二)解析:
1,理解對數(shù)函數(shù)的概念是來源于實(shí)踐的,能從函數(shù)概念的角度闡述其意義;掌握對數(shù)函數(shù)的圖象和性質(zhì),做到能畫草圖,能分析圖象,能從圖象觀察得出對數(shù)函數(shù)的單調(diào)性、值域、定點(diǎn)等;了解同底指數(shù)函數(shù)和對數(shù)函數(shù)互為反函數(shù),能說出它們的圖象之間的關(guān)系,知道它們的定義域和值域之間的關(guān)系,了解反函數(shù)帶有逆運(yùn)算的意味;
2,通過具體的實(shí)例,歸納得出一般的函數(shù)圖象特征,并能夠通過圖象特征得到相應(yīng)的函數(shù)特征,培養(yǎng)學(xué)生的作圖、識圖的能力和歸納總結(jié)能力;
3,類比指數(shù)函數(shù)的圖象和性質(zhì)的研究方法,來研究對數(shù)函數(shù),讓學(xué)生認(rèn)識到研究問題的方法上的一般性;同時(shí),讓學(xué)生認(rèn)識到類比這一數(shù)學(xué)思想,即對相似的問題可以借鑒之前問題的研究方法來研究,有助于提高學(xué)生分析問題、解決問題的能力。
三、問題診斷分析
本節(jié)課容易出現(xiàn)的問題是:對數(shù)函數(shù)的圖象特點(diǎn)的探究容易出現(xiàn)圖象不對、歸納不全、有所偏差等情形。出現(xiàn)這一問題的原因是:學(xué)生作圖能力、識圖能力、歸納能力不強(qiáng)。要解決這一問題,教師要通過讓學(xué)生類比指數(shù)函數(shù)圖象和性質(zhì)的探究,時(shí)時(shí)回過頭看看之前是怎么做的,考慮了哪些問題,得到了哪些結(jié)論,讓學(xué)生類比自主探究,必要時(shí)給予適當(dāng)引導(dǎo),讓學(xué)生自主的得出結(jié)論,對于出錯(cuò)的地方要讓學(xué)生討論,教師做出適當(dāng)?shù)脑u價(jià)并最終給出結(jié)論。
四、教學(xué)支持條件分析
在本節(jié)課()的教學(xué)中,準(zhǔn)備使用(),因?yàn)槭褂?),有利于().
五、教學(xué)過程
問題1.前面我們已經(jīng)掌握了指數(shù)函數(shù)的概念、圖象與性質(zhì),知道了指數(shù)函數(shù)是基本初等函數(shù)之一,F(xiàn)在學(xué)習(xí)的對數(shù),也可以構(gòu)成一種函數(shù),我們稱之為對數(shù)函數(shù),那么什么樣的函數(shù)稱為對數(shù)函數(shù)呢?
[設(shè)計(jì)意圖]新課標(biāo)強(qiáng)調(diào)“考慮到多數(shù)高中生的認(rèn)知特點(diǎn),為了有助于他們對函數(shù)概念本質(zhì)的理解,不妨從學(xué)生自己的生活經(jīng)歷和實(shí)際問題入手”。因此,新課引入不是按舊教材從反函數(shù)出發(fā),而是選擇從兩個(gè)材料引出對數(shù)函數(shù)的概念,讓學(xué)生熟悉它的知識背景,初步感受對數(shù)函數(shù)是刻畫現(xiàn)實(shí)世界的又一重要數(shù)學(xué)模型。這樣處理,對數(shù)函數(shù)顯得不抽象,學(xué)生容易接受,降低了新課教學(xué)的起點(diǎn)
小問題串
1.2.2.1的例6,考古學(xué)家是如何估算出土文物或古遺址的年代的?這種對應(yīng)關(guān)系是否形成函數(shù)關(guān)系?
2. 某種細(xì)胞分裂時(shí),由1個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè) ……,如果要求這種細(xì)胞經(jīng)過多少次分裂,大約可以得到細(xì)胞1萬個(gè),10萬個(gè) ……。怎么求?相應(yīng)的對應(yīng)關(guān)系是否也形成函數(shù)關(guān)系?
3.由上述兩個(gè)實(shí)例,請你類比指數(shù)函數(shù)的概念歸納對數(shù)函數(shù)的概念
觀察這些函數(shù)的特征:含有對數(shù)符號,底數(shù)是常數(shù),真數(shù)是變量,從而得出對數(shù)函數(shù)的定義:函數(shù) ,且 叫做對數(shù)函數(shù),其中 是自變量,函數(shù)的定義域是(0,+∞).
注意:○1 對數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別.如: , 都不是對數(shù)函數(shù).○2 對數(shù)函數(shù)對底數(shù)的限制: ,且 .
4. 根據(jù)對數(shù)函數(shù)定義填空;
例1 (1)函數(shù) y=logax2的定義域是___________ (其中a>0,a≠1)
(2) 函數(shù)y=loga(4-x) 的定義域是___________ (其中a>0,a≠1)
說明:本例主要考察對數(shù)函數(shù)定義中底數(shù)和定義域的限制,加深對概念的理解,所以把教材中的解答題改為填空題,節(jié)省時(shí)間,點(diǎn)到為止,以避免挖深、拓展、引入復(fù)合函數(shù)的概念。
問題2.對數(shù)函數(shù)的圖象是什么樣?有什么特點(diǎn)呢?
[設(shè)計(jì)意圖]舊教材是通過對稱變換直接從指數(shù)函數(shù)的圖象得到對數(shù)函數(shù)圖象,這樣處理學(xué)生雖然會(huì)接受了這個(gè)事實(shí),但對圖象的感覺是膚淺的;這樣處理也存在著函數(shù)教學(xué)忽視圖象、性質(zhì)的認(rèn)知過程而注重應(yīng)用的“功利”思想。因此,本節(jié)課的設(shè)計(jì)注重引導(dǎo)學(xué)生用特殊到一般的方法探究對數(shù)函數(shù)圖象的形成過程,加深感性認(rèn)識。同時(shí),幫助學(xué)生確定探究問題、探究方向和探究步驟,確保探究的有效性。這個(gè)環(huán)節(jié),還要借助計(jì)算機(jī)輔助教學(xué)作用,增強(qiáng)學(xué)生的直觀感受
小問題串
1. (1)用描點(diǎn)法在同一坐標(biāo)系中畫出下列對數(shù)函數(shù)的圖象
(2)用描點(diǎn)法在同一坐標(biāo)系中畫出下列對數(shù)函數(shù)的圖象
2. 觀察對數(shù)函數(shù) 、 與 、 的圖象特征 ,看看它們有那些異同點(diǎn)。
3. 利用計(jì)算器或計(jì)算機(jī),選取底數(shù) ,且 的若干個(gè)不同的值,在同一平面直角坐標(biāo)系中作出相應(yīng)對數(shù)函數(shù)的圖象。觀察圖象,它們有哪些共同特征?
4. 歸納出能體現(xiàn)對數(shù)函數(shù)的代表性圖象,并說明以后如何畫對數(shù)函數(shù)的簡圖。
例題
1.課本P75 A組第10題
2. 求函數(shù) 的定義域,并畫出函數(shù)的圖象。
六、目標(biāo)檢測
求下列函數(shù)的定義域
(1) ;
(2) ;
本文來自:逍遙右腦記憶 http://www.portlandfoamroofing.com/gaoyi/73164.html
相關(guān)閱讀:
函數(shù)概念的應(yīng)用
上一篇:
指數(shù)函數(shù)的性質(zhì)的應(yīng)用
下一篇:
函數(shù)的零點(diǎn)
相關(guān)主題
函數(shù)概念的應(yīng)用
對數(shù)函數(shù)的性質(zhì)的應(yīng)用
集合的概念及其表示
常見的對數(shù)函數(shù)解題方法
對數(shù)函數(shù)的概念及其性質(zhì)
對數(shù)函數(shù)的性質(zhì)及簡單應(yīng)用
對數(shù)的概念與對數(shù)運(yùn)算性質(zhì)
用二分法求方程的近似解
集合的概念
函數(shù)的概念與圖象
相關(guān)推薦
推薦閱讀
二分法
學(xué)習(xí)目標(biāo): 1.理解變號零點(diǎn)的概念。 2.用二分法求函數(shù)零點(diǎn)的步驟及原理。 3.了解二分法……
兩條直線平行
總 課 題兩直線的平行與垂直總課時(shí)第23課時(shí) 分 課 題兩條直線平行分課時(shí)第 1 課時(shí) 目標(biāo)掌握……
指數(shù)函數(shù)的性質(zhì)的應(yīng)用
2.1.2.3指數(shù)函數(shù)的性質(zhì)的應(yīng)用 一、內(nèi)容及其解析 (一)內(nèi)容:指數(shù)函數(shù)的性質(zhì)的應(yīng)用。 (二……
4.6對數(shù)函數(shù)
4.6對數(shù)函數(shù) 【目標(biāo)】: 知識與技能:理解對數(shù)函數(shù)的概念,掌握它們的基本性質(zhì),進(jìn)一步領(lǐng)會(huì)……
函數(shù)單調(diào)性的應(yīng)用
1.3.1函數(shù)單調(diào)性的應(yīng)用 一、內(nèi)容與解析 (一)內(nèi)容:函數(shù)單調(diào)性的應(yīng)用 (二)解析:本節(jié)課要……
相關(guān)閱讀
空間兩條直線的位置關(guān)系
點(diǎn)到直線的距離
函數(shù)的奇偶性
對數(shù)函數(shù)及其性質(zhì)
對數(shù)的運(yùn)算性質(zhì)
二次函數(shù)與一元二次方程
實(shí)際問題的函數(shù)刻畫
集合
集合與函數(shù)的概念
三角函數(shù)的周期性
右腦記憶論壇
|
快速記憶法
|
記憶力培訓(xùn)
|
速讀培訓(xùn)
|
速讀軟件
Copyright(C) 2006-2014
逍遙右腦
All Rights Reserved