題1.1、你能證明它們嗎(一)型新授目標(biāo)1、了解作為證明基礎(chǔ)的幾條公理的內(nèi)容,掌握證明的基本步驟和書(shū)寫(xiě)格式。2、經(jīng)歷“探索-發(fā)現(xiàn)-猜想-證明”的過(guò)程。能夠用綜合法證明等腰三角形的關(guān)性質(zhì)定理和判定定理。重點(diǎn)了解作為證明基礎(chǔ)的幾條公理的內(nèi)容,掌握證明的基本步驟和書(shū)寫(xiě)格式。教學(xué)難點(diǎn)能夠用綜合法證明等腰三角形的關(guān)性質(zhì)定理和判定定理。教學(xué)方法觀察法教學(xué)后記
教 學(xué) 內(nèi) 容 及 過(guò) 程學(xué)生活動(dòng)一、復(fù)習(xí):1、什么是等腰三角形?2、你會(huì)畫(huà)一個(gè)等腰三角形嗎?并把你畫(huà)的等腰三角形栽剪下。3、試用折紙的辦法回憶等腰三角形有哪些性質(zhì)?二、新講解:在《證明(一)》一中,我們已經(jīng)證明了有關(guān)平行線的一些結(jié)論,運(yùn)用下面的公理和已經(jīng)證明的定理,我們還可以證明有關(guān)三角形的一些結(jié)論。同學(xué)們和我一起回憶上學(xué)期學(xué)過(guò)的公理本套教材選用如下命題作為公理 :1.兩直線被第三條直線所截,如果同位角相等,那么這兩條直線平行; 2.兩條平行線被第三條直線所截,同位角相等; 3.兩邊夾角對(duì)應(yīng)相等的兩個(gè)三角形全等; (SAS)4.兩角及其夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等; (ASA)5.三邊對(duì)應(yīng)相等的兩個(gè)三角形全等; (SSS)6.全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等. 由公理5、3、4、6可容易證明下面的推論:推論 兩角及其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等。(AAS)證明過(guò)程:已知:∠A=∠D,∠B=∠E,BC=EF求證:△ABC≌△DEF證明:∵∠A=∠D,∠B=∠E(已知)∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形內(nèi)角和等于180°)∠C=180°-(∠A+∠B)∠F=180°-(∠D+∠E)∠C=∠F(等量代換)BC=EF(已知)△ABC≌△DEF(ASA)這個(gè)推論雖然簡(jiǎn)單,但也應(yīng)讓學(xué)生進(jìn)行證明,以熟悉的基本要求和步驟,為下面的推理證明做準(zhǔn)備。三、議一議:(1)還記得我們探索過(guò)的等腰三角形的性質(zhì)嗎?(2)你能利用已有的公理和定理證明這些結(jié)論嗎?等腰三角形(包括等邊三角形)的性質(zhì)學(xué)生已經(jīng)探索過(guò),這里先讓學(xué)生盡可能回憶出,然后再考慮哪些能夠立即證明。定理:等腰三角形的兩個(gè)底角相等。這一定理可以簡(jiǎn)單敘述為:等邊對(duì)等角。已知:如圖,在ABC中,AB=AC。求證:∠B=∠C證明:取BC的中點(diǎn)D,連接AD。∵AB=AC,BD=CD,AD=AD,∴△ABC△≌△ACD (SSS)∴∠B=∠C (全等三角形的對(duì)應(yīng)邊角相等)四、想一想:在上圖中,線段AD還具有怎樣的性質(zhì)?為什么?由此你能得到什么結(jié)論?應(yīng)讓學(xué)生回顧前面的證明過(guò)程,思考線段AD具有的性質(zhì)和特征,從而得到結(jié)論,這一結(jié)合通常簡(jiǎn)述為“三線合一”。推論 等腰三角形的頂角的平分線、底邊上的中線、底邊上的高互相重合。五、隨堂練習(xí):做教科書(shū)第4頁(yè)第1,2題。六、堂小結(jié):通過(guò)本的學(xué)習(xí)我們了解了作為基礎(chǔ)的幾條公理的內(nèi)容,掌握證明的基本步驟和書(shū)寫(xiě)格式。經(jīng)歷“探索-發(fā)現(xiàn)-猜想-證明”的過(guò)程。能夠用綜合法證明等腰三角形的關(guān)性質(zhì)定理和判定定理。探體會(huì)了反證法的含義。七、外作業(yè):教科書(shū)第5頁(yè)第1,2題。
板書(shū)設(shè)計(jì):
這個(gè)推論雖然簡(jiǎn)單,但也應(yīng)讓學(xué)生進(jìn)行證明,以熟悉的基本要求和步驟,為下面的推理證明做準(zhǔn)備。
學(xué)生充分討論問(wèn)題1,借助等腰三角形紙片回憶有關(guān)性質(zhì)
讓學(xué)生盡可能回憶出,然后再考慮哪些能夠立即證明
讓同學(xué)們通過(guò)探索、合作交流找出其他的證明方法
學(xué)生回顧前面的證明過(guò)程,思考線段AD具有的性質(zhì)和特征,討論圖中存在的相等的線段和相等的角,發(fā)現(xiàn)等腰三角形性質(zhì)定理的推論,從而得到結(jié)論,這一結(jié)合通常簡(jiǎn)述為“三線合一”。
右腦記憶論壇 | 快速記憶法 | 記憶力培訓(xùn) | 速讀培訓(xùn) | 速讀軟件 |
Copyright(C) 2006-2014 逍遙右腦 All Rights Reserved