逍遙右腦記憶網(wǎng)-免費(fèi)提供各種記憶力訓(xùn)練學(xué)習(xí)方法!
超右腦
|
催眠術(shù)
|
潛能開發(fā)
|
影像閱讀
|
右腦開發(fā)訓(xùn)練
|
網(wǎng)站地圖
記憶方法
右腦開發(fā)
快速閱讀
思維導(dǎo)圖
學(xué)習(xí)方法
學(xué)習(xí)計(jì)劃
作文大全
早期教育
勵(lì)志名言
右腦記憶
記憶法
|
記憶宮殿
|
記憶力訓(xùn)練
記憶術(shù)
|
最強(qiáng)大腦
|
右腦記憶法
學(xué)習(xí)方法
高中學(xué)習(xí)方法
|
高考
|
小學(xué)資源
|
單詞記憶
初中學(xué)習(xí)方法
|
中考
|
教案設(shè)計(jì)
|
試題中心
潛能成功
吸引力法則
|
成功學(xué)
|
九型人格
注意力訓(xùn)練
|
潛意識(shí)
|
思維模式
初中學(xué)習(xí)方法
初中語(yǔ)文
初中英語(yǔ)
初中數(shù)學(xué)
初中物理
初中化學(xué)
初中生物
初中政治
初中歷史
初中地理
中考學(xué)習(xí)網(wǎng)
初一學(xué)習(xí)方法
初一語(yǔ)文
初一數(shù)學(xué)
初一英語(yǔ)
初一生物
初一政治
初一歷史
初一地理
初二物理
初一學(xué)習(xí)
初中教案
初二學(xué)習(xí)方法
初二語(yǔ)文
初二數(shù)學(xué)
初二英語(yǔ)
初二生物
初二政治
初二歷史
初二地理
初三物理
初二學(xué)習(xí)
初中試題
初三學(xué)習(xí)方法
初三語(yǔ)文
初三數(shù)學(xué)
初三英語(yǔ)
初三生物
初三政治
初三歷史
初三地理
初三化學(xué)
初三學(xué)習(xí)
初中作文
逍遙右腦記憶
>
教案設(shè)計(jì)
>
數(shù)學(xué)
>
九年級(jí)
>
二次函數(shù)
編輯:
逍遙路
關(guān)鍵詞:
九年級(jí)
來源:
高中學(xué)習(xí)網(wǎng)
26.1 二次函數(shù)(1)
目標(biāo):
(1)能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。
(2)注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認(rèn)識(shí),培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣
重點(diǎn)難點(diǎn):
能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。
過程:
一、試一試
1.設(shè)矩形花圃的垂直于墻的一邊AB的長(zhǎng)為xm,先取x的一些值,算出矩形的另一邊BC的長(zhǎng),進(jìn)而得出矩形的面積ym2.試將計(jì)算結(jié)果填寫在下表的空格中,
AB長(zhǎng)x(m)123456789
BC長(zhǎng)(m)12
面積y(m2)48
2.x的值是否可以任意取?有限定范圍嗎?
3.我們發(fā)現(xiàn),當(dāng)AB的長(zhǎng)(x)確定后,矩形的面積(y)也隨之確定, y是x的函數(shù),試寫出這個(gè)函數(shù)的關(guān)系式,
對(duì)于1.,可讓學(xué)生根據(jù)表中給出的AB的長(zhǎng),填出相應(yīng)的BC的長(zhǎng)和面積,然后引導(dǎo)學(xué)生觀察表格中數(shù)據(jù)的變化情況,提出問題:(1)從所填表格中,你能發(fā)現(xiàn)什么?(2)對(duì)前面提出的問題的解答能作出什么猜想?讓學(xué)生思考、交流、發(fā)表意見,達(dá)成共識(shí):當(dāng)AB的長(zhǎng)為5cm,BC的長(zhǎng)為10m時(shí),圍成的矩形面積最大;最大面積為50m2。
對(duì)于2,可讓學(xué)生分組討論、交流,然后各組派代表發(fā)表意見。形成共識(shí),x的值不可以任意取,有限定范圍,其范圍是0 <x <10。
對(duì)于3,教師可提出問題,(1)當(dāng)AB=xm時(shí),BC長(zhǎng)等于多少m?(2)面積y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函數(shù)關(guān)系式.
二、提出問題
某商店將每件進(jìn)價(jià)為8元的某種商品按每件10元出售,一天可銷出約100件.該店想通過降低售價(jià)、增加銷售量的辦法來提高利潤(rùn),經(jīng)過市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每降低0.1元,其銷售量可增加10件。將這種商品的售價(jià)降低多少時(shí),能使銷售利潤(rùn)最大?
在這個(gè)問題中,可提出如下問題供學(xué)生思考并回答:
1.商品的利潤(rùn)與售價(jià)、進(jìn)價(jià)以及銷售量之間有什么關(guān)系?
[利潤(rùn)=(售價(jià)-進(jìn)價(jià))×銷售量]
2.如果不降低售價(jià),該商品每件利潤(rùn)是多少元?一天總的利潤(rùn)是多少元?
[10-8=2(元),(10-8)×100=200(元)]
3.若每件商品降價(jià)x元,則每件商品的利潤(rùn)是多少元?一天可銷售約多少件商品?
[(10-8-x);(100+100x)]
4.x的值是否可以任意取?如果不能任意取,請(qǐng)求出它的范圍,
[x的值不能任意取,其范圍是0≤x≤2]
5.若設(shè)該商品每天的利潤(rùn)為y元,求y與x的函數(shù)關(guān)系式。
[y=(10-8-x) (100+100x)(0≤x≤2)]
將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:
y=-2x2+20x (0<x<10)……………………………(1)
將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:
y=-100x2+100x+20D (0≤x≤2)……………………(2)
三、觀察;概括
1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出以下問題讓學(xué)生思考回答;
(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個(gè)?
(各有1個(gè))
(2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式?
(分別是二次多項(xiàng)式)
(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)?
(都是用自變量的二次多項(xiàng)式來表示的)
(4)本章導(dǎo)圖中的問題以及P1頁(yè)的問題2有什么共同特點(diǎn)?
讓學(xué)生討論、交流,發(fā)表意見,歸結(jié)為:自變量x為何值時(shí),函數(shù)y取得最大值。
2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).
四、課堂練習(xí)
1.(口答)下列函數(shù)中,哪些是二次函數(shù)?
(1)y=5x+1 (2)y=4x2-1
(3)y=2x3-3x2 (4)y=5x4-3x+1
2.P3練習(xí)第1,2題。
五、小結(jié)
1.請(qǐng)敘述二次函數(shù)的定義.
2,許多實(shí)際問題可以轉(zhuǎn)化為二次函數(shù)來解決,請(qǐng)你聯(lián)系生活實(shí)際,編一道二次函數(shù)應(yīng)用題,并寫出函數(shù)關(guān)系式。
六、作業(yè):略
26.1 二次函數(shù)(2)
教學(xué)目標(biāo):
1、使學(xué)生會(huì)用描點(diǎn)法畫出y=ax2的圖象,理解拋物線的有關(guān)概念。
2、使學(xué)生經(jīng)歷、探索二次函數(shù)y=ax2圖象性質(zhì)的過程,培養(yǎng)學(xué)生觀察、思考、歸納的良好思維習(xí)慣
重點(diǎn)難點(diǎn):
重點(diǎn):使學(xué)生理解拋物線的有關(guān)概念,會(huì)用描點(diǎn)法畫出二次函數(shù)y=ax2的圖象是教學(xué)的重點(diǎn)。難點(diǎn):用描點(diǎn)法畫出二次函數(shù)y=ax2的圖象以及探索二次函數(shù)性質(zhì)是教學(xué)的難點(diǎn)。
教學(xué)過程:
一、提出問題
1,同學(xué)們可以回想一下,一次函數(shù)的性質(zhì)是如何研究的?
(先畫出一次函數(shù)的圖象,然后觀察、分析、歸納得到一次函數(shù)的性質(zhì))
2.我們能否類比研究一次函數(shù)性質(zhì)方法來研究二次函數(shù)的性質(zhì)呢?如果可以,應(yīng)先研究什么?
(可以用研究一次函數(shù)性質(zhì)的方法來研究二次函數(shù)的性質(zhì),應(yīng)先研究二次函數(shù)的圖象)
3.一次函數(shù)的圖象是什么?二次函數(shù)的圖象是什么?
二、范例
例1、畫二次函數(shù)y=ax2的圖象。
解:(1)列表:在x的取值范圍內(nèi)列出函數(shù)對(duì)應(yīng)值表:
x…-3-2-10123…
y…9410149…
(2)在直角坐標(biāo)系中描點(diǎn):用表里各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在平面直角坐標(biāo)系中描點(diǎn)
(3)連線:用光滑的曲線順次連結(jié)各點(diǎn),得到函數(shù)y=x2的圖象,如圖所示。
提問:觀察這個(gè)函數(shù)的圖象,它有什么特點(diǎn)?
讓學(xué)生觀察,思考、討論、交流,歸結(jié)為:它有一條對(duì)稱軸,且對(duì)稱軸和圖象有一點(diǎn)交點(diǎn)。
拋物線概念:像這樣的曲線通常叫做拋物線。
頂點(diǎn)概念:拋物線與它的對(duì)稱軸的交點(diǎn)叫做拋物線的頂點(diǎn).
三、做一做
1.在同一直角坐標(biāo)系中,畫出函數(shù)y=x2與y=-x2的圖象,觀察并比較兩個(gè)圖象,你發(fā)現(xiàn)有什么共同點(diǎn)?又有什么區(qū)別?
2.在同一直角坐標(biāo)系中,畫出函數(shù)y=2x2與y=-2x2的圖象,觀察并比較這兩個(gè)函數(shù)的圖象,你能發(fā)現(xiàn)什么?
3.將所畫的四個(gè)函數(shù)的圖象作比較,你又能發(fā)現(xiàn)什么?
對(duì)于1,在學(xué)生畫函數(shù)圖象的同時(shí),教師要指導(dǎo)中下水平的學(xué)生,講評(píng)時(shí),要引導(dǎo)學(xué)生討論選幾個(gè)點(diǎn)比較合適以及如何選點(diǎn)。兩個(gè)函數(shù)圖象的共同點(diǎn)以及它們的區(qū)別,可分組討論。交流,讓學(xué)生發(fā)表不同的意見,達(dá)成共識(shí),兩個(gè)函數(shù)的圖象都是拋物線,都關(guān)于y軸對(duì)稱,頂點(diǎn)坐標(biāo)都是(0,0),區(qū)別在于函數(shù)y=x2的圖象開口向上,函數(shù)y=-x2的圖象開口向下。
對(duì)于2,教師要繼續(xù)巡視,指導(dǎo)學(xué)生畫函數(shù)圖象,兩個(gè)函數(shù)的圖象的特點(diǎn);教師可引導(dǎo)學(xué)生類比1得出。
對(duì)于3,教師可引導(dǎo)學(xué)生從1的共同點(diǎn)和2的發(fā)現(xiàn)中得到結(jié)論:四個(gè)函數(shù)的圖象都是拋物線,都關(guān)于y軸對(duì)稱,它的頂點(diǎn)坐標(biāo)都是(0,0).
四、歸納、概括
函數(shù)y=x2、y=-x2、y=2x2、y=-2x2是函數(shù)y=ax2的特例,由函數(shù)y=x2、y=-x2、y=2x2、y=-2x2的圖象的共同特點(diǎn),可猜想:
函數(shù)y=ax2的圖象是一條________,它關(guān)于______對(duì)稱,它的頂點(diǎn)坐標(biāo)是______。
如果要更細(xì)致地研究函數(shù)y=ax2圖象的特點(diǎn)和性質(zhì),應(yīng)如何分類?為什么?
讓學(xué)生觀察y=x2、y=2x2的圖象,填空;
當(dāng)a>0時(shí),拋物線y=ax2開口______,在對(duì)稱軸的左邊,曲線自左向右______;在對(duì)稱軸的右邊,曲線自左向右______,______是拋物線上位置最低的點(diǎn)。
圖象的這些特點(diǎn)反映了函數(shù)的什么性質(zhì)?
先讓學(xué)生觀察下圖,回答以下問題;
(1)XA、XB大小關(guān)系如何?是否都小于0?
(2)yA、yB大小關(guān)系如何?
(3)XC、XD大小關(guān)系如何?是否都大于0?
(4)yC、yD大小關(guān)系如何?
(XA
yB;XC
0,XD>0,yC
其次,讓學(xué)生填空。
當(dāng)X<0時(shí),函數(shù)值y隨著x的增大而______,當(dāng)X>O時(shí),函數(shù)值y隨X的增大而______;當(dāng)X=______時(shí),函數(shù)值y=ax2 (a>0)取得最小值,最小值y=______
以上結(jié)論就是當(dāng)a>0時(shí),函數(shù)y=ax2的性質(zhì)。
思考以下問題:
觀察函數(shù)y=-x2、y=-2x2的圖象,試作出類似的概括,當(dāng)a
讓學(xué)生討論、交流,達(dá)成共識(shí),當(dāng)a
O時(shí),函數(shù)值y隨x的增大而減小,當(dāng)x=0時(shí),函數(shù)值y=ax2取得最大值,最大值是y=0。
五、課堂練習(xí):P6練習(xí)1、2、3、4。
六、作業(yè): 1.如何畫出函數(shù)y=ax2的圖象?
2.函數(shù)y=ax2具有哪些性質(zhì)?
本文來自:逍遙右腦記憶 http://www.portlandfoamroofing.com/chusan/63561.html
相關(guān)閱讀:
二次根式的乘除
上一篇:
二次根式的加減法
下一篇:
九年級(jí)數(shù)學(xué)競(jìng)賽轉(zhuǎn)化—可化為一元二次方程的方程講座
相關(guān)主題
二次根式的乘除
用配方法解一元二次方程學(xué)案
九年級(jí)數(shù)學(xué)上冊(cè)第22章一元二次方程教學(xué)案(五份)
二次函數(shù)y=ax²+bx+c圖象的圖象和性質(zhì)
用一元二次方程解決實(shí)際問題
建立二次函數(shù)模型3
蘇科版中考第一輪復(fù)習(xí)教學(xué)案《反比例函數(shù)》
一元二次方程
九年級(jí)數(shù)學(xué)競(jìng)賽方程與函數(shù)輔導(dǎo)教案
二次函數(shù)教案
相關(guān)推薦
推薦閱讀
正多邊形和圓
九年級(jí)數(shù)學(xué)上冊(cè)導(dǎo)學(xué)稿 課 題24.3正多邊形和圓課 型新授課執(zhí)筆人 審核人 級(jí)部審核講學(xué)時(shí)間第……
中考復(fù)習(xí)方程與不等式的綜合應(yīng)用學(xué)案
課時(shí)9 方程與不等式的綜合應(yīng)用 班級(jí)________ 姓名_________ 【課前熱身】 1. 西寧市天然氣……
概率導(dǎo)學(xué)稿
M 九年級(jí)數(shù)學(xué)上冊(cè)導(dǎo)學(xué)稿 課 題25.1.2 概率 審核人級(jí)部審核講學(xué)時(shí)間第七周第3導(dǎo)學(xué)稿 教師寄……
中考數(shù)學(xué)復(fù)習(xí):反比例函數(shù)
第十七章 反比例函數(shù) 本章小結(jié) 小結(jié)1 本章概述 本章的主要內(nèi)容是反比例函數(shù)的概念和圖象,……
二次根式的混合運(yùn)算
§3.3.2二次根式的混合運(yùn)算(九年級(jí)下數(shù)學(xué)307)—— 研究課 班級(jí)________姓名____________ ……
相關(guān)閱讀
點(diǎn)與圓的位置關(guān)系
二次函數(shù)的一些應(yīng)用
弧長(zhǎng)及扇形的面積
中考數(shù)學(xué)閱讀理解題復(fù)習(xí)教案
九年級(jí)數(shù)學(xué)競(jìng)賽幾何的定值與最值輔導(dǎo)教案
九年級(jí)數(shù)學(xué)競(jìng)賽充滿活力的韋達(dá)定理知識(shí)講
中考數(shù)學(xué)閱讀理解型專題復(fù)習(xí)
圓復(fù)習(xí)導(dǎo)學(xué)案
位似變換
弧弦和圓心角
右腦記憶論壇
|
快速記憶法
|
記憶力培訓(xùn)
|
速讀培訓(xùn)
|
速讀軟件
|
Copyright(C) 2006-2014
逍遙右腦
All Rights Reserved