逍遙右腦記憶網(wǎng)-免費提供各種記憶力訓練學習方法!
超右腦
|
催眠術
|
潛能開發(fā)
|
影像閱讀
|
右腦開發(fā)訓練
|
網(wǎng)站地圖
記憶方法
右腦開發(fā)
快速閱讀
思維導圖
學習方法
學習計劃
作文大全
早期教育
勵志名言
右腦記憶
記憶法
|
記憶宮殿
|
記憶力訓練
記憶術
|
最強大腦
|
右腦記憶法
學習方法
高中學習方法
|
高考
|
小學資源
|
單詞記憶
初中學習方法
|
中考
|
教案設計
|
試題中心
潛能成功
吸引力法則
|
成功學
|
九型人格
注意力訓練
|
潛意識
|
思維模式
高中學習方法
高中語文
高中英語
高中數(shù)學
高中物理
高中化學
高中生物
高中政治
高中歷史
高中地理
高中教案
高中試題
高一學習方法
高一語文
高一數(shù)學
高一英語
高一物理
高一化學
高一生物
高一政治
高一歷史
高一地理
高一學習
高二學習方法
高二語文
高二數(shù)學
高二英語
高二物理
高二化學
高二生物
高二政治
高二歷史
高二地理
高二學習
高三學習方法
高三語文
高三數(shù)學
高三英語
高三物理
高三化學
高三生物
高三政治
高三歷史
高三地理
高三學習
逍遙右腦記憶
>
教案設計
>
數(shù)學
>
高二
>
余弦定理
編輯:
逍遙路
關鍵詞:
高二
來源:
高中學習網(wǎng)
目標
1.知識與技能:掌握余弦定理的兩種表示形式及證明余弦定理的向量方法,并會運用余弦定理解決兩類基本的解三角形問題。
2.過程與方法:利用向量的數(shù)量積推出余弦定理及其推論,并通過實踐演算掌握運用余弦定理解決兩類基本的解三角形問題,
3.情態(tài)與價值:培養(yǎng)學生在方程思想指導下處理解三角形問題的運算能力;通過三角函數(shù)、余弦定理、向量的數(shù)量積等知識間的關系,來理解事物之間的普遍聯(lián)系與辯證統(tǒng)一。
重點:余弦定理的發(fā)現(xiàn)和證明過程及其基本應用;
教學難點:勾股定理在余弦定理的發(fā)現(xiàn)和證明過程中的作用。
學法:首先研究把已知兩邊及其夾角判定三角形全等的方法進行量化,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題,利用向量的數(shù)量積比較容易地證明了余弦定理。從而利用余弦定理的第二種形式由已知三角形的三邊確定三角形的角
教學設想
[創(chuàng)設情景] C
如圖1.1-4,在 ABC中,設BC=a,AC=b,AB=c,
已知a,b和 C,求邊c b a
A c B
[探索研究] (圖1.1-4)
聯(lián)系已經(jīng)學過的知識和方法,可用什么途徑來解決這個問題?
用正弦定理試求,發(fā)現(xiàn)因A、B均未知,所以較難求邊c。
由于涉及邊長問題,從而可以考慮用向量來研究這個問題。
A
如圖1.1-5,設 , , ,那么 ,則
C B
(圖1.1-5)
從而
同理可證
余弦定理:三角形中任何一邊的平方等于其他兩邊的平方的和減去這兩邊與它們的夾角的余弦的積的兩倍。即
思考:這個式子中有幾個量?從方程的角度看已知其中三個量,可以求出第四個量,能否由三邊求出一角?(由學生推出)從余弦定理,又可得到以下推論:
[理解定理]從而知余弦定理及其推論的基本作用為:
①已知三角形的任意兩邊及它們的夾角就可以求出第三邊;
②已知三角形的三條邊就可以求出其它角。
思考:勾股定理指出了直角三角形中三邊平方之間的關系,余弦定理則指出了一般三角形中三邊平方之間的關系,如何看這兩個定理之間的關系?
(由學生總結(jié))若 ABC中,C= ,則 ,這時
由此可知余弦定理是勾股定理的推廣,勾股定理是余弦定理的特例。
例題:例1.在 ABC中,已知 , , ,求b及A
⑴解:∵
= cos
= = 8 ∴
求 可以利用余弦定理,也可以利用正弦定理:
⑵解法一:∵cos ∴
解法二:∵sin 又∵ >
< ∴ < , 即 < < ∴
評述:解法二應注意確定A的取值范圍。
例2.在 ABC中,已知 , , ,解三角形
解:由余弦定理的推論得:
cos ;
cos ;
[隨堂練習]第51頁練習第1、2、3題。
[補充練習]在 ABC中,若 ,求角A(答案:A=120 )
[課堂小結(jié)](1)余弦定理是任何三角形邊角之間存在的共同規(guī)律,
勾股定理是余弦定理的特例;
(2)余弦定理的應用范圍:①.已知三邊求三角;
②.已知兩邊及它們的夾角,求第三邊。
(五):作業(yè):第52頁[習題2.1]A組第5題。
三角形中的幾何計算
教學目標
1.知識與技能:掌握在已知三角形的兩邊及其中一邊的對角解三角形時,有兩解或一解或無解等情形;三角形各種類型的判定方法;三角形面積定理的應用。
2. 過程與方法:通過引導學生分析,解答三個典型例子,使學生學會綜合運用正、余弦定理,三角函數(shù)公式及三角形有關性質(zhì)求解三角形問題。
3.情態(tài)與價值:通過正、余弦定理,在解三角形問題時溝通了三角形的有關性質(zhì)和三角函數(shù)的關系,反映了事物之間的必然聯(lián)系及一定條件下相互轉(zhuǎn)化的可能,從而從本質(zhì)上反映了事物之間的內(nèi)在聯(lián)系。
教學重點:在已知三角形的兩邊及其中一邊的對角解三角形時,有兩解或一解或無解等情形;三角形各種類型的判定方法;三角形面積定理的應用。
教學難點:正、余弦定理與三角形的有關性質(zhì)的綜合運用。
學法:通過一些典型的實例來拓展關于解三角形的各種題型及其解決方法。
教學設想:[創(chuàng)設情景]:思考:在 ABC中,已知 , , ,解三角形。從此題的分析我們發(fā)現(xiàn),在已知三角形的兩邊及其中一邊的對角解三角形時,在某些條件下會出現(xiàn)無解的情形。下面進一步來研究這種情形下解三角形的問題。
[探索研究]:例1.在 ABC中,已知 ,討論三角形解的情況
分析:先由 可進一步求出B;則 從而
1.當A為鈍角或直角時,必須 才能有且只有一解;否則無解。
2.當A為銳角時,如果 ≥ ,那么只有一解;
如果 ,那么可以分下面三種情況來討論:(1)若 ,則有兩解;
(2)若 ,則只有一解; (3)若 ,則無解。
評述:注意在已知三角形的兩邊及其中一邊的對角解三角形時,只有當A為銳角且 時,有兩解;其它情況時則只有一解或無解。
[隨堂練習1]
(1)在 ABC中,已知 , , ,試判斷此三角形的解的情況。
(2)在 ABC中,若 , , ,則符合題意的b的值有_____個。
(3)在 ABC中, , , ,如果利用正弦定理解三角形有兩解,求x的取值范圍。 (答案:(1)有兩解;(2)0;(3) )
例2.在 ABC中,已知 , , ,判斷 ABC的類型。
分析:由余弦定理可知
(注意: )
解: ,即 ,∴ 。
[隨堂練習2]
(1)在 ABC中,已知 ,判斷 ABC的類型。
(2)已知 ABC滿足條件 ,判斷 ABC的類型。
(答案:(1) ;(2) ABC是等腰或直角三角形)
例3.在 ABC中, , ,面積為 ,求 的值
分析:可利用三角形面積定理 以及正弦定理
解:由 得 ,
則 =3,即 ,從而
[隨堂練習3]
(1)在 ABC中,若 , ,且此三角形的面積 ,求角C
(2)在 ABC中,其三邊分別為a、b、c,三角形的面積 ,求角C
(答案:(1) 或 ;(2) )
[課堂小結(jié)](1)在已知三角形的兩邊及其中一邊的對角解三角形時,
有兩解或一解或無解等情形;
(2)三角形各種類型的判定方法;
(3)三角形面積定理的應用。
(五)課時作業(yè):
(1)在 ABC中,已知 , , ,試判斷此三角形的解的情況。
(2)設x、x+1、x+2是鈍角三角形的三邊長,求實數(shù)x的取值范圍。
本文來自:逍遙右腦記憶 http://www.portlandfoamroofing.com/gaoer/65938.html
相關閱讀:
空間向量基本定理學案練習題
上一篇:
常見的數(shù)列求和及應用
下一篇:
兩個變量的線性相關
相關主題
空間向量基本定理學案練習題
正余弦定理的應用
正弦函數(shù),余弦函數(shù)的圖象
莖葉圖
解三角形
不等式求最值
輸入出語句和賦值語句
向量的概念及表示
條件語句
函數(shù)的極值與導數(shù)
相關推薦
推薦閱讀
二項式定理導學案
第11時 1.3.1 二項式定理(一) 學習目標 1.用兩個計數(shù)原理分析 的展開式,歸納地得出二項……
相互獨立事件同時發(fā)生的概率
一、參考例題 [例1]一袋中有2個白球和2個黑球,把“從中任意摸出1個球,得到白球”記作事……
向量的坐標表示與坐標運算
【學習目標】 鞏固平面向量坐標的概念,掌握平行向量的坐標表示,并且能用它解決向量平行(……
正弦定理、余弦定理的應用
目的:1 進一步熟悉正、余弦定理內(nèi)容;? 2 能夠應用正、余弦定理進行邊角關系的相互轉(zhuǎn)化;?……
新人教A版選修2-32.1離散型隨機變量及其
2.1.1離散型隨機變量 目標: 知識目標:1.理解隨機變量的意義; 2.學會區(qū)分離散型與非離……
相關閱讀
雙曲線、拋物線的參數(shù)方程學案
高二數(shù)學2.4 二次分布學案
解三角形
等比數(shù)列的概念及通項
平面向量的坐標表示
基本不等式
正余弦定理的應用
中國古代數(shù)學中的算法案例
二項式定理學案
計算導數(shù)
右腦記憶論壇
|
快速記憶法
|
記憶力培訓
|
速讀培訓
|
速讀軟件
Copyright(C) 2006-2014
逍遙右腦
All Rights Reserved